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Abstract

A high-order stabilization filter was formerly designed to stabilize
an-unstable pitch control system of a.terminal homing misgile systeg. In
this report, a new dominant-data matching method is presented to redesign
the high order stabilization filter. Using this new method several re-
duced order filters are obtained. As a result, the cost of implementation
is reduced and the reliability is increased. An algebraic method is also
applied to redesign the stabilization filter so that the performance of
the redesigned pitch control system is improved. In addition, the pro-
posed dominant-data matching method can be applied to determine a reduced
order model of a high order system. Unlike the reduced order models ob-
tained by most existing model reduction methods, the reduced order model
mentioned above has the exact assigned frequency-domain specifications of
the original system. The dominant-data matching method can also be applied
to identify any practical system. ‘Yv




ABSTRACT

A high-order stabilization filter was formerly designed to
stabilize an unstable pitch control system of a terminal homing missile
system. In this report, a new dominant-data matching method is pre-
sented to redesign the high order stabilization filter. Using this new
method several reduced order filters are obtained. As a result, the
cost of implementation is reduced and the reliability is increased. An
algebraic method is also applied to redesign the stabilization filter
so that the performance of the redesigned pitch control system is im-
proved. In addition, the proposed dominant-data matching method can be
applied to determine a reduced order model of a high order system.
Unlike the reduced order models obtained by most existing model reduc-
tion methods, the reduced order model mentioned above has the exact
assigned frequency-domain specifications of the original system. The
dominant-data matching method can also be applied to identify any

practical system.
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CHAPTER 1

INTRODUCTION

This report deals with the simplification and realization of a

stabilization filter designed to stabilize the pitch control system of

an unstable semi-active terminal homing missile system [1].

diagram of the existing stabilized system is shown in Fig. 1.

R(s) +

F
sta

W) 1 G,(s)

Y(s)

Hg(s) =1

<

The block

Figure 1. The Block Diagram of the Existing Control System

The overall transfer function of the existing system shown in Fig. 1

is given by

X .« - o o « . ® o @

Fstab(s)Tact(s)Tmiss(s)

-1
m
~
0
S’
]

1+Fstab(s)Tact(ngmiss(s)Hg(s)

\Forap (8)6o(s)
I+F_ ap (816 (8)H (s)

ne>

Ge(S)
1+Ge(s)§8(s)

1o

»

where

(1.1




. s s
P ] b(s) i ;.6(—2-5 +1)(—125 +1) _
sta s 0.6 s .2, ,0.
[(T§6) +(T§3)s+1][(555) +(555)s+1]

B , - 460800(s+25) (s+125)
' (524905+22500) (s2+160s+4x10™)

. . 460800 (s+25) (s+125) (1.2)
(s+45%7143.0908802) (s+80%3183.3030278) :

Go(s) The transfer function of the actuator and the air frame dynamics

of the missile system.

The open loop transfer function of the original pitch control

system iff F (s) =1 and Hg(s) = 1.

stab

[T, ()1 [T, ()]

i

. |- 26937.9(s+65) (s+1500) | (o 12:04(s+0.1933)
(s+87.9%395.5) (s+112.5) (s+1385)  's(s-2.921) (s+3.175)

l - 324332.316(s+0.1933) (s+65) (s+1500) (1.3)
s(5-2.921)(s+3.175) (s+87.9%395.5) (s+112.5) (s+1385) *
' Ge(s) = Fstab(s) Go(s) Hg(s) (1.4)
= The open loop transfer function of the existing stabilized system. ;
Hg(s) = Transfer function of the gyro.

]

1, as the rate gyro is not present in the system.

After substituting Hg(s) a 1 and Eqn. (1.2) and (1.3) into Eqn. (1.1)

it becomes




|
3
l T (o) - Ge(s) ) bos +b 59+...+b10 A NGs) (L)
€ 1+Ge(s) a.s +a.s 0+a sg+...+a D(s)
0 11
|
where
|
ao =1 b0 0
|
a, = 1.923554000x10° b, = 0
l a, = 9.316239040x10° b, = 0 ‘
ay = 2.976950696x10° by =0
a, - 6.231675318x101° b, = 0
‘ ag = 9.360329977x1012 by 1.494523312x1011
; a = 9.749923212x10M* by = 2.563396371x10"
a, = 6.667397031x10%° b, 5.017212044x10%°
ag = 2.42040 431x10'8 by 2.926344345x10"8
ag = 2.911920560x10'8 by 4.610004670x10%%
a, = 2.419047424x1017 " 8.802158509x1018
ay, = 8.802158509x1018

From Fig. 1 as well as from Eqn. (1.2) it can be noticed that the exist-
ing stabilization filter Fstab(s) is a fourth-order series compensator

with two pairs of complex poles. (s) is not a positive real function

Fstab

and hence cannot be synthesized with passive elements. The objective of

]
l
l
!
|
|
I
I
I




4
this report is to develop computer-aided design methods for redesigning
the stabilization filter in a simpler form so that the cost of imple-
mentation of the compensator can be reduced and at the same time the
- performance of the redesigned pitch control system remains the same as
that of the existing pitch control system.
Nyquist plots of Ge(s) and Go(s) are shown in Fig. 2. The

dominant frequency-response data of Ge(s) are given below:

o a
——

. i) The real and imaginary parts of Ge(s) at s = jw = jO are
l Re [G,(j0)] = -2.103817 and Im [G_(jO)] = = (2.1)

or Te(JO) =1

B et

ii) The gain margin Gem of this system Ge(jw) is

-~ _ _1——— - 1 . 1
| Gem - lGe(jwen)l lRe[Ge(jwen)]l ]_l.sl (2.2)

where the phase-crossover frequency - is given by

. e such Cige ) = -180° T P N L]
W 1.9 rad/sec*such-* that !Ge(Jwe") 1890 (2.2) i
= 1.9 i
em i
rad/sec. are .
Re[Ce(jwe")] = -1.507944 (2.4)
Im[Ge(jwe")] = =0,006490205 (2.5)

111) The phase margin ®em of the system Ge(jw) is

' The equivalent real and imaginary parts of Ge(jwen) at w
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= o ~ . ~ °
.. by = 180° + [g?(Jmec) 5.7787 (2.6)

where the gain cross-over frequency Woe is given by Yoo = 3,2

rad/sec so that
l [Ge(jwec)l =1 (2.7)

The equivalent real and imaginary parts of Ge(jw) at o =W, = ,

3.2 rad/sec., are

Re[Ge(jwec)] -0.9939143 (2.8)

-0.09547478 (2.9)

Im[(,e (Jmec) ]

The frequency response data at w = 0 in (2.1) indirectly indi-
cates the steady-state value of the unit step response of the system
T (s). The data at w = w _ and w = w__ in Eqn. (2) represent two con-
e en ec
trol specifications [2]: gain margin and phase margin. These control
specifications characterize the relative stability and the transient re-
sponse of the existing stabilized system. The dominant frequency response
b(s) etc, are listed below:

sta

i) The real and imaginary parts of Go(jw) at w = 0 are

| data of Go(s), F

Re[GO(jO)]= -1.304841 and Im[Q{jO)] = o (3.1)

ii) The phase margin ¢0m of the original system Go(jw) is
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- .2 peg LYYy - .. S . . e s . PO « o Py . N * 7 - . s @S- . .
= o x = ]
¢0m = 180° + {GO(JwOC) 5.58 (3.2)

where the gain crossover frequency w is given by

Oc

Woe = 1.6 rad/sec. so that IGO(jwoc)l =1, (3.3)

Other frequency response data at Wor = 1.9 rad/sec. and Wee = 3,2

rad/sec. are

iii) Re[GO(jwe")] = ~0.9370766
(3.4)
Im[GO(jwe“)] = 0.06716120
iv) Re[GO(jwec)] = -0.6181657
(3.5)
Im[GO(jweC)] = 0.01949691

The dominant frequency response data of the stabilization filter

‘ Fstab(s) are
i) Re[Fstab(jO)] = 1.6 and Im[Fstab(jO)] =0 4.1)
4
ii) Re[FStab(jwew)] = 1.600492 and Im[Fstab(jwen)] = 0.1216316
at w__ = 1.9 rad/sec. (4.2)
en
or
~ 2 - - o
lkstab(Jwe“)l = 1.605107127 and {F rab(J0aq) = 4.345918198
at w = 1.9 rad/sec. (4.3)
en

iii) Re[Fstab(jwec)] = 1.601402 and Im[F 0.2049554

(u,,)]

= N
at w, 3.2 rad/sec. (4.4)

stab

it et e




baw,

8
or
. _ _ ] .
|Fopap(Juel = 1:616464333 and fF_ (G, ) = 7.293349493
at w, = 3.2 rad/sec. (4.5)

Now, analyzing the data we have from Eqn. (1.3) and (1.4), it is clear
that Go(s) and Ge(s) are non-minimum phase functions and they are un-
stable because of the pole s = 2.821 which is in the right half plane
of the s-plane. Referring to the Nyquist plots in Fig. 2, and according to
Nyquist stability criterion the original missile system (wiéhout Fstab(S))
is unstable whereas the existing stabilized system is asymptotically
stable. However, due to the small positive phase margin given in Eqn.
(2.5), the time response of the existing stabilized system is quite os-
cillatory.

To redesign the pitch control systew or the stabilization filter
s: that the cost of implementation is reduced and the flight control !
performance of the missile system is improved, two computer-aided methods
have been developed. These two proposed methods will be discussed in
this report step by step. In Chapter Il a transfer function (called a
standard transfer function Tr(s)) is obtained by using a dominant-data
matching method. Tr(s) matches the assigned specifications given in
Eqn. (2). Therefore, the standard transfer function Tr(s) mentioned
above is a reduced-order model of the existing stabilized system Te(s)
in Eqn. (1.5). The unit step response curves of Te(s) and Tr(s)
will be compared. This comparison will also verify that the data in Eqn.
(2) are dominant ones.

To solve the nonlinear equations obtained in Chapter 11 four
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different methods of finding initial guesses are discussed in Chapter
111,

1n Chapter 1V two reduced order models of the stabilization fil-
ter Fstab(s) are obtained. One of these two is obtained by using the
dominant-data matching method and the other by using a similar approach
to fit a low order model that satisfies the specifications shown in Eqn.
4).

Chapter V consists of two parts, in the first part the dominant-
data matching method is used to obtain an unstable reduced érder model
of the original high-order unstable system GO(S) shown in Eqn. (1.3).
This is done just to simplify the design procedure. In the second part
of Chapter V the algebraic method of Shieh [3] and Chen [4] is applied to re- ;
design the pitch control system. This is done by designing a series !
filter in the feed forward path and a parallel filter in the fredback

path. Thus, the advantages of feedback control structurehave been fully

utilized.




CHAPTER I1
THE DOMINANT-DATA MATCHING METHOD

The design goals of a control system are often characterized by
a set of control specifications. These specifications can be classi-
fied as i) time-domain specifications such as rise time, setting time,
ii) frequency domain specifications such as phase margin, gain margin
and iii) complex domain specifications such as damping rati9. and natural
angular frequency. Empirical rules that link the specifications in the
time, trequency, and complex domains have been developed by Truxal
[5], Toro and Parker [6], Axelby [7] and Seshadri et. al. [8]. From
these results, it is observed that most time-domain specifications and
complex-domain specifications can be approximately converted to fre-
quency~domain specifications. Some of these frequency-domain specifi-
cations are phase margin (¢m), gain margin (Gm), maximum value of the
closed-loop frequency response (Mp), phase crossover frequency (wn),
gain-crossover frequency (wc), peak value frequency (wp), the bandwidth
(wb), ang the velocity error constant (K ). Other important frequencv re-

sponse data are:

(D The real part and imaginary part of the closed-loop function
T(s) as well as the corresponding open-loop function G(s) at

s = jw = jO,

(2) the real part of the open-loop transfer function G(jw) at the
phase crossover frequency w, which has been used to define the

gain margin (Cm).

10




(3 the corner frequencies in the Bode plot of G(jw) in the regions
of w = w, where 20 logIG(jwcl)I =+ 15 db and w = Weo where

20 loglC(jwcz)! = -15 db.

Chen (9] has shown empirically that the open-loop poles and zeros of a
system can be approximated by retaining the Bode plot in the regions of
the * 15 db boundaries.

The data at w = 0 often indicate the final value and the type
of the system. More specifically, the value of T(j0) or regl part of G(jO) indi-
cates the final value of the system, while the imaginary part of G(jO) indi-
cates the type of the system. For example, for a type '0' system, the
imaginary part of G(jO) is O, and for any system other than type '0',
for example, say type 'l', it is infinity.

Depending on the problem one has, one can use any one or a com~
bination of the time domain, frequency domain and complex-domain speci-
fications. However, in this case the original pitch control system that
is available is a high order transfer function with large coefficients

Eqn. (1.5). As a result the time response curve and the corresponding
time domain specifications of this practical systenm Te(s) are difficult

to obtain., On the other hand, with the help of a digital computer the
frequency response curve and hence the frequency domain specifications

of Te(s) can be easily determined. Therefore, a frequency domain approach
or a dominant data matching method is proposed to construct a transfer
function Tr(s), a reduced order model of Te(s), and to redesign the

pitch control system. Several methods have been already proposed [10,
11,12] to obtain reduced order models by considering frequency domain

specifications. However, the only reduced order models that satisfy the
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assigned specifications exactly are the ones obtained by the proposed
method.

From the rules of thumb it is observed that the gain margin,
the phase margin, the gain cross-over frequency and the phase cross-
over frequency are the most important frequency response data. These
data are called the dominant frequency response data. Another impor-
tant frequency response data is the steady state value of a closed-loop
system, which is indirectly given by the value of the real part of the
open loop transfer function G(jw) at w = 0. These dominant'frequency
response data may be considered as the design goal. Let us assume that
the desired reduced order model of Te(s) which may be called the standard

model of Te(s) is

2
b0+bls+b25

2 3
a0+als+azs +a3$

Tr(s) =

It is required that Tr(s) satisfies all the conditions given
in Eqn. (2).

From the conditions in (2.1), it may be observed that the sys-

tem Te(S) is a type 1 system, Therefore b0 = a,. Also, to simplify the
equation we let a; = 1. Thus, we have
a, +b._s+b s2 G _(s)
T () = ——1 2 R— (5.1)
r a.t+a, sta sz+s3 1+Gr(s)
01 2

where the open-loop transfer function Gr(s) is given by

a . +b,s+b s2 K[ 1l+c s+c252]

0 1" "2 1

Gr(s) = = (5.2)
1

s[(al-b1)+(a2-b2)s+52] s[1+d s+d2s2]




[
o
o
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o

where K = 0 sy C, = L y €, = 2 , d. =

The unknown coefficients a, and bi are to be determined by us-
ing the conditions in Eqn. (2). Following the basic definitions and
substituting the assigned data in Eqn. (2) yields a set of nonlinear

equations fi(aO’al’az'bl’bZ) =0 fori=1,2,...,5 as follows:

K[1+jmc1+(jw)2C2]

i) Gr(jw) 7
jw[l+jwd1+(jw) d2]

- & uteap+ G0 ) )
= = [1+jw(c1-d1)]

K
= K(ey=dy) - 3 ¢

fim . - _ - e
wap Gpldw) = Kley=d)) =

a b a,-b
£im 0 1 2 2
Rel*I7 6 (jw)] = K(cy-d)) = —2— (=5 - ==
w0 r 171 a1 b1 ao al b1

) (6.0)

Eqn. (2.1) gives Re[G (j0)] = -2.1
a b a -b
or R (1- - __.2_ __2_) - _2.1

a;=by "3, a;-by

b ao(az-b )

or a Eb - g = =2,1
171 (al-bl)
2
or fl(ao,al,az,bl,bz) = bl(al-bl)-ao(az-b2)+2.l(al-bl) = 0

(6.1)

:
!




ii)

iii)

iv)

o e - - EERI 3 . -'-iac'o
The data in (2.2), or Re{Gr(jme“)] = ~1,5, at Wy = 1.9 rad/sec
gives
(a.-w’b_)+jub
0 2 1
2 . 2 ]
-w (az-b2)+3w(a1-b1—w )

w=w w=w_ _=1.9
em en

Re[Gr(jw)] = Rel = -1.5

or
2 2 2 2
~wo, (ag=wy b)) (ay-by)w, by (a)-by-u 1)

4 2,2 2,2
weﬂ(aZ-bZ) +u)evr(al-bl-me'n)

= 1.5

en .
or
fZ(aO’al’aZ’bl’bZ) = (az-bz)(a0-3.6lb2)-bl(a1-bl-3.61)

- 2 2, .
1.5[3.61(a,~b,) "+ (a;~b;-3.61)"] = 0 (6.2)

1

The condition in (2.3), or {Gr(jwen) = -180° where Woq = 1.9

rad/sec, gives

2
w b w _(a,~b.,-w )
tan 1 ——Elil—— - 180° + tan 1 er 11 en

3 = =-180°
ao—weﬂb2 we“(az-bz)

or
Lo . a -b;-3.61
- 3g3:61b, " 1.9Gay-by) .
1.9b (a,~b,-3.61)
1 - S

I9(ay-3.61b,) (a,b,) ‘

or
f3(a0,al,az,b1.b2) = 3.61b1(az-b2)+(ao-3.61b2)(al~b1—3.61) =0

(6.3)
The data in (2.6) or

= o ] =5, °
¢em 180° + /Cr(jmec) 5.7787°, yields

w_ =3.2 rad/sec
ec

3
]
t
]
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3.2b a,-b.-10.24
-1 1 -1 %17
180° + tan - —-7=—=—— - 180° + tan = ——7——— = 5,7787°
a,-10.24b, 3.2(ay-b,)
or 3.2b a -b -10.24
! 17017
- a,-10.24b, 3.2(a,-b,) - s grere
an 3.2b (a,-b,-10.24) .
A 1 -
: 3.2(az—b2)(a0—10.24b2)
oY
10.24b, (a,=b,)+(a=10.24b,) (a;~b; -10.24)

= 0.10120072
| 3.2(a,~b,) (a,-10.24b,)-3.2b, (a;-b,-10.24) _

or

fa(ao‘al’aZ’bl’bZ) = 10.24b1(82—b2)+(ao-10.24b2)(al—b1—10.24)

0.3238423014[(az-bz)(ao-10.26b2)-b1(al-b1

10.24)]1 = 0

(6.4)

v)

IGr(Jmec)| = 1 vhere w__ = 3.2 rad/sec, gives
l_ ao~10.24b2+33.2b1 I .
, ~10.24(82-b2)+33.2(al—b1—10.24) i
i
or .
f.(a.,a,,a,,b,,b.) = (a,-10.24b )2+10 24b2-10h.8576(a -b )2
57071727172 0 * 2 * 1 2 "2
- 10.24(a1—b]-1o.24)2 =0 (6.5)

The condition in (2.7) or

Eqn. (6) is a set of high order simultaneous nonlinear algebraic equa-
tions which are very difficult to solve. The Newton-Raphson method that

is available in most digital computersas a computer program package

gty

i
g
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(called the z systerm [15])can be used to solve the nonlinear equations.
However, it is well known that the Newton-Raphson method will only con-
verge for a small range of starting values or the initial guesses. In
order to improve the speed of convergence of the method four different
methods of finding good initial guesses will be discussed in the next

chapter,

1
1
o
o
|
a




CHAPTER III
THE INITIAL GUESS

In this report, the Newton-Raphson multidimensional method is
suggested for solving nonlinear equations. However, as it is well
known, high order nonlinear equations have many solutions and, depend-
ing on the starting values or the initial guesses, a solution may or
may not be obtained. Therefore, the solution and the speed of conver-
gence of a numerical method for solving nonlinear equations.depend
heavilyon the initial guesses. In numerical mathematics, as well as
in other areas of science, finding an appropriate initial guess for a
set of nonlinear equations is itself a big problem to be solved. In
this report, the following methods are proposed for good initial guesses.

The applications of these methods depend on the type of problem one has.

1) Initial guess by the synthesis method.

Suppose only the dominant frequency-response data in (2) are
available and an approximate transfer function T:(s) of the desired
T _(s) in (5.1) is required. The T.(s) is

a*+b*s+b*s2

* 0 1 2
T () = 5% 3 (7)

2
ao+als+azs +s

¥ *
where a; and bi are the initial guesses of the numerical method. 1In

k!
the synthesis method T;(s) in (7) is obtained as follows:

*
Step 1. In this step a second-order approximate transfer function Tz(s)

is obtained by using ¢m = 5,7° and w, = 3.2 rad/sec. in (2.6) and (2.7).

17




. ¢ .. e a8 - - -a - -- -

%
This Tz(s) is

2 G*( )
* w s
T,(s) = ——P—— = 2, (8.1)
s™H2zw s+w 14+G, (s)
n n 2

where 7 = the damping ratio and w, o= the natural angular frequency. i
By following the basic definitions of w, and ¢m the following equations

are obtained.

From (8.1)
i
wz w?'
* n n
G,(s8) = —— =
2 s(s+20w ) sz+2;wns
x wi mi -1 2cwn
Cz(ju) = — = - /-180°+tan
-w +32Cwnw ’m4+452w2w§
*
By definition |G2(jwc)l = 1, where w_ = 3.2 rad/sec.
2
w
—_—t— =
/$4+4C2w2m2
C cn
or, w:-40.96;2wi-104.8576 -0 (8.2)

Next, by definition

*
- L3 [} - o .
¢m = {szjwc) + 180 5.7° given

2w
—-1 4 180°
W
Cc

.. 5.7° = -180° + tan-l

20w

. °
or, 3.2 tan 5.7
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substituting (8.3) into (8.2) yields
CA = 0.0000061422
the square root of which is
¢? = £0.0024783561
considering the positive root only
5 = 0.0497830911 we neglect the negative root
Substituting this in (8.3), yields
w = 3.207940617 rad/sec.
T:(s) = - 10.290883 (8.4)

s +0.31940245+10.290883

The poles that can be considered as dominant poles of a system can be
determined from the characteristic equation in (8.1). As such dominant

poles are

S, . = -cwntjmn/l-cz = -0.1598+§3.2039

1 I 1,2
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*
Step 2. In this step a third-order transfer function T3(s) is construct-

e¢d by inserting a pole (s = -p) in it and modifying the term in the

* * .
numerator of Tz(s) so that the steady state value of the T3(s) is equal

to unity, or

2
P vy 10.290883p

(sP+20u stul) (stp)  (s240.31940245+10.290883) (s+p)

*
T3(S)

* o
03(5)

1+G3(s)

(8.5)

The unknown constant p is determined by using the condition in (2.2),

*
or Re[GB(Jweﬂ)] = -1.5, where Wor = 1.9 rad/sec. Thus, from (8.5)

10.290883p
3 5 — (8.6)
s +(p+0.3194024)s"+(0.3194024p+10.290883) s

* —
03(8) =

let s = jw, then

10.290883p
~w? (p+0. 3194024) +jw (0. 3194024p+10. 290883-w

e
L3(Jw) = 2) (8.7)

-10.290883p w’ (p+0.3194024)

Re(G,y(u)) =

W (p+0.3194024) 2442 (0. 3194024p+10.290883-u2) 2
(8.8)
%
at w=w, = 1.9 rad/sec, Re[G3(jw)] = ~1.5
-10.290883(p+0.3194024) s (6.9)

3.61(p+0.319&026)2+(O.319402ép+6.b80883)

After simplification, (8.9) becomes
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pZ - 1.391925823p=14.29298735 = 0

or p = 4.540095027, we reglect the negative root.

Thus (8.5) becomes

*
TV (s) = 46.72158673

3 46.72158673+11.741000255+4 . 85949742752+

(8.10)

k%
Step 3. In this step another third-order transfer functionm T3 (s) is

constructed by inserting a zero in (8.10) as shown below.

* *%
"% 46.72158673+bls G3 (s)
Ty (s) = 2,3 L
46.,72158673+11.74100025s+4.859497427s +s 1+G3 (s)
(8.11)
%
The unknown constant b, can be determined by using the condition in

1
(6.0) and (2.1), or Re[Ge(jO)] = -2,1 as shown below. From (8.11), we

get
*
"k bls+46.72158673
Cy (8 = = )
s +4.859497427s +(ll.74100025—b1)s
bl
or C**(S) o 46.72158673[ 1+ Z€T7EI§§€7§]
3 - 4.859497427
s(11.74100025-b ) [1+ 7527000555~ S+ )

1

According to Eq. (6.0)

46.72158673 b1 4.859497427

Lim B -
11.7&100025-bl (66.72158673 11.74100025—\:1

w0

i
Re[G3 (jw)) =

fok
Given Re[G3 (jO)] = -2.1 in (2.1)
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_46.72158673 °y _ 4.859497427

11.74100025-!)1 46.72158673 11.74100025-bl :
or bi-34.15563709b1 + 56.76713817 = 0
which gives bl = 32.4037687, since we are interested in the positive value
only.
Substituting this into (8.11), we have

*ok .7216+32.
™) - 46.7216+32.4038s (8.12)

46.7216+11.7410s+4.85955 245>

Equation (8.12) can be considered as an approximation of (7) by assuming

X - 11.7410
T '

* *
5y = 4.8595, bl = 32.4038, and b2 = 0. For solving Eq. (6.1)~(6.5) these

constants are used as initial guesses for the Newton-Raphson method [15].

*
b, = 0. Thus the initial guesses in (7) are a; = 46.7216, a

[
\

It is found that the numerical method converges at the 9th iteration

with the error tolerance of 10-6. The solutionsof (6.1)-(6.5) are

[}

39

>,

6.378070, a, = 10.462220, a, = 1.259008, b, = 20.55667 and

2 1

0.243466. Therefore, the desired transfer function Tr(s) is

1

6.378070+20.556675+0.2434665°
6.378070+10.462220s+1 .2590085+s

Tr(s) = 3 »
The system represented by Eq. (9) has the exact frequency response data

specified in (2).

(2) Initial guess by complex-curve fitting and continued fraction

methods

In this part a simple method is presented to determine the ap-
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proximate coefficients of a transfer function using the real parts and
imaginary parts of the limited number of frequency-response data that
are available. Using these data a low-order model is constructed.

The low-order model is then expanded into a continued fraction of the
second Cauer form to obtain a set of dominant quotients. Some non-
dominant quotients are then inserted into the continued fraction to
obtain an amplified-order model [16}, which is the desired approximate
transfer function Ti(s) for the use of the initial guess.

Consider the transfer function

2 m
* . b0+bls+bzs +...+bms
Tr(s) = (10.1)

1+a_ s+a sz+...+a sn
1 2 n

where a, and bi are unknown coefficients to be determined. The problem of
finding unknown coefficients of a transfer function as a ratio of two
frequency~-dependent polynomials has been investigated by Levy [17].

His method minimizes the sum of squares of the errors at arbitrary ex-

perimental points. However, for finding the unknown coefficients of a

transfer function the method presented next is comparatively simple and
straightforward.

Substituting s = jwk into (10.1), we have

. . 2 .
btiu b+ (uw ) byt .+(ka)m'bm

T (u, ) =
r(ka B

. 2 . n
1+jwkal+(3wk) az+...+(3wk) ag

1 Separating the real partsand imaginary partsin the numerator and denom-

*
inator of Tr(jmk) we have
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2 4 6 . 3 5 7
T*(jw , - (bO wak+b4wk-b6wk+"')+J(blwk_b3wk+b5wk-blmk+"')
r-k (i-a w2+a 4 6 3 5 7

2% amk—aka+...)+J(alwk-a3wk+aswk-a7wk+...)

R(mk) + jI(mk)

= R+ 31, (10.2)

where Rk and Ik are the given valuesof the real and imaginary parts of
. .
the T;(s) at the available frequencies w . Multiplying both sides of

(10.2) by the common denominator and separating the real and imaginary

parts, we have

2 4 6 . 3 5 7 !
(b0 wak+b4wk b6wk+...)+J(blwk-b3wk+b5wk-b7wk+...) §

2 4 6 3 5
= R - - cev - - +...
RemaRputa Rwy-a oo+ ay L tas o -agLwyg

. 3 5 7 2 4 6
+ J(alewk—a3kak+aSRkwk-a7kak+"'+1k—aZIkwk+aAIkmk a61kmk+...)

Equating the real and imaginary parts from both sides, yields

2. 4. 6 . 2 4 6
0 P9 Mo W by e e = RymaRew ta, Rewy —agR o b, .

3 5 :
- allkwk+a31kwk-aslkwk+... (10.3) !

5 7 ) 3 5. 7
19 P30 tbg 0 by e = a Ry magR o acR w ca Ryt

2 4 6
+ Ik—azIkmk+aélkwk-361kwk+"' (10.4)

Eq. (10.3) and (10.4) can be written as




]
i
I

Substituting a; obtained in

equation to solve for bi’ i

rwl -mz wi -wz een Fb
_3 wS _ 1 b
W, wy 2 Wy oo
3 5 7
m3 -w3 m3 -w3 .s b
L? -w3 ws -w7 .o b
y y -

25
b.-b w2+b ma-b w6+...+a I w +a mz-a I w3—a u4+.. =
07024 MRy Py 1l R ahea ket = Ry
(10.5)
3 5 7 2 3 4
blwk-b3wk+b5wk—b7wk+... alewk+azIkwk+a3Rkwk-aAIkwk—... = Ik
(10.6)
In matrix form, (10.5) becomes
B 2 4 6 3 o 1.7 L]
1 -w Wy -ml Ilwl lel -Ilwl —lel b0 Rl
2 6 3
1 —wz w —w, 12w2 R2w2 Izmz -szz .bz R2
2 4 6 2 3 4
1 —w3 wq w3 . I3w3 R3m3 —I3w3 -R3m3 . b& R3
. a;
. . a,
1 -w2 wA —w6 I w R w -1 w3 -R w . a R
| X X X X X X X X X X 1L nA L. EJ
(10.7)
where X =n + % +1 s if m is even
+1’12*-l , if m is odd

(10.7) into (10.6), we have another matrix

=1,3,5,...
1 [ 0 1 2
1 ((aOIlml+a1lel)—(a211w1+a3lei¥...)_
0 1 2 3
3 ((3012w2+a1R2w2)-(a212w2+a3R2w2)+...)
5 1° g
(4] 1 2 3
- +...
k| ﬁfaolymy+alRywy) (azlywy+a3Rywy) _l
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m is even.

In this pitch control system, the available data is given in

2

m+l
v = —

where wo =1, a, = 1; K=m and 1

(2) from which the following data is obtained,

W, = wy S 0, R1 = Te(jO) =
G (jwe

wy T w = 1.9 , R2 = k[—_—l-i-G G )]
G, (Gw,

wy =W = 3.2 , R3 = Re[1+6—r————y]

if m is odd; K = m-1 and y =

26

NIE
.
"h

1, =0
G (Jwe )
=2.968398,  I,=I_ [‘1+c—(3—)‘] =-0.02515098
(11)
G (jw
=0,3350731, m[flg“EiF‘71 =-10.43159

Data is available only at three frequencies, therefore the approximate

*
transfer T2(S) is assumed to be

+a s8+a, s
! 1 2

Substituting the data at Wy Wy

r; 0 0

L_

From (12,2), we get

bo =1

1 -0.047786862 10.71591678

1 -33.381088 3.431148544

and wq

(12.1)

in (11) into (10.7) yields

b0 1 1

a; =] 2.968398

a, 0.3350731
L. - L _

b, - 0.047786862a, + 10.71591678a, = 2.968398

0 1

bO - 33.381088a1 + 3.6311&856&a2

2
= 0.3350731

(12.2)

(12.3)

(12.4)




Substituting by = 1 into (12.3) and (12.4) yields

-0.047786862a1 + 10.71591678a, = 1.968398

2

-33.381088al + 3.431148544a, = -0.6649269

2

Solving these two equations, we get

0.0388179596

[V
]

0.1838622891

W
1t

Then substituting a; and the data at w, into (10.8) yields

2

w

N

=
"

9.250106342

2.890658232

=
"

Substituting a; and bi’ into (12.1) gives

" Yy A
ris) - 1+2.890658232s . 12.5)

1+0.0388179596s5+0.1838622891s

However, the desired approximate transfer function in (7) is a third-
*

order function. Therefore Tz(s) in (12.5) needs to be amplified. 1In

this case this is done by using the continued fraction method ([16] as

follows.

Cauer form to obtain a set of dominant quotients. They are given as

*
l TZ(S) is first expanded into a continued fraction of the second
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h, = 1, h, = -0.3506507744, h, = 0.9650474175 and h

1 2 3 4 16.072551656.

*
Then the order of Tz(s) is amplified by inserting two nondominant quo-

tients h, = 100 and h, = 0.1, or

I S 6
‘ * ol
f (o) - 1+2.8906582 325 .
, l 1+0.03881795965+0.1838622891s
. l = 1
: 1
ho+
] b
S
i 1
I h3+ 1
Py i
- s i_
1 i
= (12.6)
o4 —1
: e
@ s
: s
) SN |
3 h
4 _ﬁ_” 1
S
I hot —2 |
5 |
. |
l s
/ |
{ Substituting '
B
F :
% h =1 ¥
t ' h, = -0.3506507744
| h, = =0.9650474175 '

h, = 16,07251656
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100

{
5 |
h 0.1 into (12.6), it becomes .

pogrsitsn s

5&.3885+162.69145+15.821952

54, 3885+7.58395+10. 21465 +5>

* Lk * N
Tz(s) = T3(s) =T (s) = (12.7)

In solving (6.1)-(6.5) if we use the coefficients in (12.7) as initial

i e e BTN Fhor T e

* * * *

guesses; a, = 54,3885, a, = 7.5839, a, = 10.2146, b1 = 162.6914 and :
* ?
b, = 15.8219, we have the desired coefficients in (9) at the 15th iter- :

2

ation [15] with the error tolerance of 10-6. This proves once again ¢

that if the inserted positive quotients hi >> 1 and hi+ << 1 (i is an

1
odd number) the amplified order model is a good approximation of the ¢

original low-order model.

(3) Initial guess by continued fraction method {[18]

Shieb {3] and Chen [10] have proposed a continued fraction method for

AT T MRS SRy gy v eare

model reductions. In this case their method is utilized to find initial

guesses to solve Eq. (6.1)-(6.5). The numerator polynomial N(s) and

i P

the denominator polynomial D(s) in Eq. (1.5) are arranged in ascending
order and expanded into the continued fraction of the second Cauer form

by performing repeated long divisions as follows,

2 10
N(s) b10+b93+b88 +...+bos '
T (s) = = where a,, b, are given ;
€ D(s) a,.+a, .sta 52+ +a %11 i : ;
117107797 "7 %07 in (1.5) !
= 1 (13.0) ?
h1+ i
s
| [ hy+
E h3+ S g
l bt )
h5+




|
l
l
I
l
|
!
|

where h1 =1
h2 = -0.401749
h3 = -0.475321
hA = 25,1998
h5 = -0,0322195 (13.1)
h6 = -24,1061
h7 =
fy2” ‘

The reduced order models of Te(s) can be obtained by retaining the first
few dominant quotients, hi = 1,2,... The number of quotients used de-

pends on the order and form of the reduced model. This is explained be-

low
h
fe(s) & —~"}:— = ——Bg“; (13.2)
hl+ %ﬂ 12
2
-  h hhﬁhi:: *hy (13.3)
b4 S 172737 T8
1
h2+ ;—-—
3
h h.h,+(h +h,)}s
I - 2730 M2y i (13.4)
s+s”
h+ . S hlhzh3ha+(h1h2+h1h4+h3h4)q s
h2+ 5 ;
h3+ ;‘——
4
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h,h_h h5+(h2h +h, h_+h h"‘)s+s2

| - 234 377275745
3
-2 hyhyhah hot(h hohyth hohoth b hothoh ho)s+(h +hoth,)s
s N
b —
hy . (13.5)
h3+ — :
h4+ h
5
n _hyhah ngngt(Boh b thohhothohgh ot hoh )
Ly s iphyhah hehe+(hyhyhah +hyhohsh +h hohgh +h b hoh,
1
h,+ = )
hy+ s +(h2+h4+h5)s
s 2.3
+ -2 4
h, hh hoh,)s+(hyhy+h b +h bbb +hoh +hoh )s +s
h5+§
hy (13.6)

Substituting the hi's in (13.1) into (13.6) yields the third-order ap-
proximate model of Te(s) as follows:

2
*
T (s) = 3.7376+10,4692s+0.6920s (14)

3c 3.7376+10.16615+0. 94885+

E *

Using the coefficients in (14.1) as the initial guesses: ag = 3.7376,
% %* * *
a; = 10,1661, a, = 0.9488, bl = 19,4692 and b2 = 0.6920, the desired

solution(Tr(s) given in (9))of the set of nonlinear equation (6.1)-(6.5)
are obtained at the 8th iteration with the error tolerance of 10-6.

As it has just been ghoym in this particular case, the continued
fraction method of finding the initial guess has worked out nicely.

However, this is not true always. For example, if the reduced order modecl

by the continued fraction method turns out to be an unstable system,
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the coefficients of such a reduced order model cannot be used to solve a
set of nonlinear equations. Because, an unstable initial guess often
leads to solutions which will give rise to an unstable system only. In
such cases the following mixed method can be used to obtain a stable

reduced-order model for approximation.

(4) Initial guess by using the mixed method.

In this section of the report two mixed methods are discussed.
One has the advantages of both the continued fraction method [3,10] and
the dominant pole method [19]. The other has the advantages of the
continued fraction as well as the Routh table [11], from which the
equivalent dominant-poles can be obtained. The reduced-order models
obtained by the mixed method are stable and can be used as good initial
guesses.

The relationship between the quotients hi and the coefficients

a; and bi in (13.0) can be expressed by the following matrix Eq. [3,4]:

[b] = [H] la) (1%)

where [a]T [a

T—

n-1"%0-27 232033

(b]
[H]

[hn_lvbn_zv"'ibziblvbol b
-1
(H,170 1))

here T designates transpose of a matrix
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10 o o o1 0o o o0 | [1 00 . 0 0]
0 h2 0 0 0 01 0O 0 O 01 0 0 0
0 1 h 0 O 0 0 nh 0 0 0 0 1 0 O
[Hll - 3 2
0 o0 1 0 o 0 0 1 0 0 0 0 O 0 o
0 o0 0 . 1 h 0 0 O . 1 nh 0 0 O 0 h
L nj L L B 2
Consider the reduced-order model of the original system as é
. i
r_ 1
e0+els+. +er_ls !
T (s) = ] 7 o d. =1 (16) i
d0+dls+ . td -15 +drs

The denominator polynomial in (10) is approximated by the pro-
duct of the dominant poles of the original system Te(s). Thus di is
known. Replacing a, and bi in (15) by di and e, in (16), respectively,
Eq. (15) can be solved for e, in (16). The Tr(s) obtained has the
dominant poles and the dominant quotients of Te(s) and it is always
stable, therefore, “Tr(s) can be used as a good initial guess in

solving (6.1)-(6.5).

In case the roots of D(s) in (13.0) are not available, the ap-
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proximate equivalent dominant poles and the resulting coefficients di
can be determined from the Routh table as suggested by Hutton and

Friedland[9]. The steps involved are explained below.

n-1 n-2
bn—ls b8 +""*-bZ"'.bl*-bO _ n(s)
n-1 T d(s)
_ls +...+az+al+aO

Assume T(s) = (17.1)
is the original transfer function for which the reduced order model is

needed.

Step 1. Construct a Routh array [20] using the coefficients a; of the
d(s) above and the Routh algorithm. The Routh array is shown below.
To obtain a general algorithm a; is expressed double-subscripted nota-

tion, for example, a,

i,j
a & a, 8 a,. 22 a
11 - %, 12 - -2 813 T 844 e 0
B
b2y,
. B 2 & a8
A21 7 %p-1 22 T @-3 23~ 2n-5 e
, =21
2 a31
A Lo - a. 84, .- a
31 © 212771822 %32 T 31371%20 33 e
S 1}
3 a(ol

a

Ao A
41 T 9227Y%32 342 T B237Y7%33 : e

ot e G s ) Sl S ot . —
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%n-2,1 3h-2,2
Yoo = iﬂ:ng
n= an—l,l
*n-1,1 %n-1,2 ~ %
v _ fn—l,l
n-1 an,l !
an,l :
y = n,1 .
| n a\n+l’1 |
an+l,1 = ao (17.2) i
In general
4,3 T Fi-2,5417Y1-2%3-1, 5410 1T 12eeeend = 304,
V4 = ai,l/ai+1,1 (17.3)

*
Step 2. In this step various approximate low-order polynomials di(S) are
constructed from anv two consecutive rows in the Routh array, for example,

say from the last row and the next to the last now and so on. This is

explained below.

The first order (i = 1) approximate equation is

*
dl(s) = an,ls+an+1,1 = an’ls+a0 =0 (17.4)

The second order (i = 2) approximate equation is

d*(s) = a 92+a s 2 sta. = 0 (17.5)
2 n-1,1" n,1

+ =
an-1,2 ~ %n-1,1% 3,151

———
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The third order (i = 3) approximate equation is

* 2
d3(s) = s +a 0

A-2,15 Y115 YA 2%f8 1,2 T

3 2
= a s +a s +

n-2,1°5 T3h-11 =0 (17.6)

+
30-2,2"%0
and so on.

When the original svstem (17.1) is asymptotically stable, all y, are posi-

i
tive values and the approximate polynomials d:(s) are the Hurwitz poly-

nomials. The d:(s) are normalized simply by dividing each coefficient

in d:(s) by the coefficient of the highest order term in s. These normalized di(s
are the denominator polynomials of the reduced-order models T:(s) of the

original system. Then the numerator polynomials of T:(s) are determined

simplv by substituting the coefficients of d:(s) in place of {a) in (15)

norm

and then solving the matrix equation (5) for [b], which are the coeffi-

*
cients of the numerator polynomial of Ti(s).

*
* n,(s)
The third-order reduced order model T3m(s) = — of the
d.(s)
original pitch control system in (1.5) obtained by 3 using the

mixed method is explained below.
At first, the Routh array of the pitch control system in (1.5)
is obtained. From the Routh array the normalized approximate denominator
*
d3(s) is found.

* ’
d3(s) = sj+0.952382296752+10.l9241445s+3.7b5517989 (17.7)

* *
To determine n3(s) 4 b2s3+b s+b0. the coefficients of d3(s) are

1

substituted into (15) as shown below.,




or

or

or

or

] , (13.1).

o
[}

=2
it

2
hl 0
1 h2
0 1
h1 0
1 h1h2
0 h1+h

Substituting the values of hl’ h

3

3,74557]
[H] 10.1924 (17.8)
0.9524
—
F3.7455
-1
[Hz:l [H]] 10.1924
| 0.9524
3.7455
= Eal] 10.1924
0.9524
_ 5 - -
1 0 0 1 0 0/, |1t 0 o 1 0 0
0 h, 0 fo 1 offbi=fo h, 0} [0 1 0
0 1 h 0 0 hJ)|b 01 ht |0 0 n
3 2 1 I B R
1 0 o] [ 3.7455]
01 o0 10.1924
0 0 1 0.952§J
0 b, F; 0 0 3.7455
0 byl = [0 h, 0 10.192¢ (17.9)
hihyh i b, 0 1 hyh, 0.952¢

where the hi's are the quotients of Te(s) in (1.5), which are given in

2 and h3

from (13.1) into (17.9)
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and then simplifying, we get

b0 = 3.7455 (18.1)

b0 - 0.401749 b1 = ~4.094787

substituting (18.1) yields
b1 = 19,5154 . (18.2)

and 0.524679 b1 + 0.19096 b2 = 10.37427

Substituting (18.2) yields

b, = 0.7066 (18.3)
Therefore
2
* _ 0.7066s +19.51545+3.7455
l3m(s) =3 3 (19)

s7+0,.952457+10,1924s5+3,7455

*
In solving the nonlinear Eqs. (6.1)-(6.5) if the coefficient of T3m(s)

* *
in (19) are used as starting values: a0 = 3,7455, a1 = 10,1924,
3 * *

a; = 0.9524, bl = 19.5154 and b2 = 0.7066; the Newton-Raphson method

[15] converges to the desired golution in (9) or
6. 37807+20. 5566 15+0. 24 34665° G, (s)

T (s) = 73 " 19 (s)

6.37807+10.46222s+1,259008s +s r

6

at the 8th iteration with the error tolerance of 10 °.




From (9)

Gr(s) The open-loop transfer function of the standard model

Tr(S).

6.37807+20.556615+0. 243465°
s(~10.09639+1.0155425+s2)

20 4

The Nyquist plot of Gr(s) is shown in Fig. 2 and the unit step
responses of Tr(s)’ Tzééi, T;m(s) and Te(s) are compared in Fig. 3. All
three reduced-order models Tr(S)’ T;§s) and T;m(s) give very satisfactory
approximate time response curves. However, only the Tr(s) in (9), which
uses the method of dominant frequency response data matching, has the
exact dominant-frequency response data as the original system Te(s)

given in (2).

,
i
1
i
i
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CHAPTER 1V

SIMPLIFICATION OF THE EXISTING STABILIZATION FILTER

As it appears from its name, the purpose of the stabilization
filter is to stabilize the original unstable system., The transfer

function of the existing stabilization filter F (s) is known and is

stab

given in (1.2). As it is mentioned in the introduction of this report,
the objective of this reportis to redesign the stabilization filter
so that the cost of implementation can be reduced and at th; same time
the performance of the redesigned pitch control system is the same as
that of the existing stabilized pitch control system.

In this chapter two different transfer functions are obtained
for the stabilization filter. Both of these transfer functions are ob-
tained by direct simplification of the available transfer function of
Fstab(S)’ and one of them is obtained by using the dominant data match-
ing method of Chapter 1I.

The F (s) in (1.2) can be considered as the closed-loop

stab

transfer function of a control system as

b e o 5 Sseab®™  4608005%+69120000s+144x10] QL)
stab Dgls) 146 b88)  $8495083+76900s2+72x107 s+9x10°
where the open-loop transfer function Gstab(s) is {'
460800<2+69120000§+144X107
Gstab(s) = - - - (21.2)

s*+2505-38390052-61920000s-5 . 4x10°

The dominant frequency-response data of this system are given below.
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(30 = - 5373

Gstab

ii) Re[Gstab(st")] = -1.032833 (22.2)
Im[Gstab(JmS")] = 0,002017351 (22.3)
where W = The phase crossover frequency of the stabilization filter

140 rad/sec.

iii) Re[Gstab(stc)] -1.002941 (22.4)

In[G -0.03668759 (22.5)

stab(jwsc)]

where wo = The gain crossover frequency of the stabilization filter
= 200 rad/sec.
Suppose the reduced-order model Fsl(s) of the stabilization fil-
ter is

b +4b.s G .(s)
F o (s) = —2. 1 _sl (23.1)

2 1+G . (s)
ao+als+s sl

#

where G _(s) (s)

The open-loop transfer function of Fsl

b.+b.s
- 0 1 (23.2)

o 2
(ao-b0)+(al-b1)s+s

The constants a and bi are unknown constants to be determined. Using

the specifications given in (22) and following the basic definitions of

those specifications the unknown constants a, and bi are determined as

i




-

shown below.

For Fsl(s) in (23.1) to be a reduced order model of F (s),

stab

GSI(S) must satisfy all the specifications of Gstab(s) in (22). Apply-

ing the condition in (22.1) to the system Gsl(s) in (23.2) yields

% 1
st s =30 G000 = 55" T 50375
00
or, b0 = 1.6a0 (24.1)

Substituting (24.1) into (23.1) and (23.2), respectively, we get

1.6a0+bls
F ,(g) = —mm— (24.2)
sl a.+a s+s2
01
and
l.6a,tb.s
G (s) = 0 1 (24.3)

2
-0.6aO+(a1-b1)s+s

1.680+jwb1

2.,
-(0.6a0+w )+Jw(al-b1)

(Jw)

at s = jw Gsl

(1.6a +jmb1ﬁ-(o.6a0+w2)—jw(a1-bl)]

0
(0.6ao+w2)2+w2(al-b1)2

2 2
-1.630(0.6a0+w Y+w bl(al—bl)

Re[Gsl(jw)] (24.4)

2.2, 2 2
(0.6ao+w ) 4w (al-bl)

2
-mb](0.630+w )—1.6wao(al-bl)

5 (24.5)

Im(G_,(Juw)l
sl (0.6a0+w2)2+w2(a1-b1)

i) Specification in (22,2) yields
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Re[G_,(j140)] = -1,032833

Substituting (24.4) above gives

or

ii)

or,

or

iii)

or

-1.630(0.6a0+19600)+l9600b1(al—b )

3 2 = -1.032833
(0.6ao+l9600) +19600(al-b1)

fl(aO’al’bl) = -1.630(0.63 +19600)+19600b1(al—b1)

0

+ 1.032833[(0.6a +19600)2+196OO(al-b1)?] =0

(25.1)

0

The data in (22,3) when applied to (24.5) yields

Im[GSl(jlbo)] = 0,002017351

-b.)

-140b1(0.6a0+19600)—22/4a0(a1 1

5 5 = 0,002017351
(0.6a0+19600) +19600(a1—b1)

fz(ao,al,bl) = —160b1(0.630+19600)-224a0(al—b1)

- 0.002017351((0.6a +19600)2+19600(al-b1)2] =0

0
(25.2)

The data in (22.4) when applied to (24.4) gives

Re[Gsl(jZOO)] = -1.002941

—1.6a0(0.6aO+b0000)+40000b1(a1-b )

1

5 5 = ~1.002941
(0.6ao+40000) +40000(a1-b1)

f
{
§
H
i
3

i
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or f3(a ’bl) = -1.680(0.6a0+&0000)+b0000b1(al-bl)

031

+ 1.002941[(0.6a0+40000)2+40000(al-b1)2] =0
(25.3)

Equation (25) is a sct of nonlinear equations. The unknown con-
stants a, and bi in (23.1) are determined by solving (25). However, to
solve equation (25, the proper initial guesses have to be determined first.
As discussed in Chapter III, the initial guesses can be determined from

(s)

the reduced-order model of the existing stabilization filter FStab

in (1.2). Using the mixed method of the continued fraction approximation

*
and the Routh approximation, a reduced-order model Frl(s) is obtained as

follows. x %
b.+b.s *
*
Assume F | (s) = 0 1 =1 (s) (26.1)
rl * % 2 *
a_ +a. s+s d (s)
01
L 1 : . .
Routh's st ilitv criterien for Fstab(s) is
s 1 76900 9x108
s3 250 72*105
f~—~~— - — = ~=-==-q
s | 48100 9x10® !
1 ' m T
s | 2522245,.322 J
so 9*108

*
As discussed in the Section 4 of Chapter III,the d (s) in (26.1)

is approximated from the Routh criterion shown above. Thus

*
d (s) = 4810052+2522245.3225+9x108 =0

*
After normalization d (s) becomes




*
4 (s) = s2452.43755+18711.01871

Therefore, now (26.1) becomes

* *
x bls+b0
Frl(s) -7

s +52,.4375s+18711.01871

The quotients hi of Fstab(s) are obtained below

9x10° 72x10° 76900
h = <<::::::j

144x10" 69120000 460800
h2= <

36x10° -211100 250
h. = -0. 593315/////

3 \\\\\\\
%G676000 470800 40

-~ *
h1 0 b0 1 0 18711.01871
[ ;\'. =
_} hlh2 bl 0 h2 52.84375
- * -
or 0.625 0 bO 1 0 18711.01871
*

1 -25 bl 0 -40 52.4375

250

% *
Using Eq. (15) b; and b1 in (26.1) are determined as follows.
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(26.2)

(26.3)




* 18711.01871

or bO = 70,625 = 29937.62994 (26.4)

% 2 * o
and by - 25b, = -2097.5

0 *
o ~2097-5-by  2097,5+29937. 62994

or 1 -25 25

*
or b, = 1281.40525 (26.5)

Substituting (26.4) and (26.5) into (26.3) yields

1281.405255+29937.62994

sz+52.43755+18711.01871

*
Frl(S) =

(26.6)

*
0" 18711.01871,

% *
a; = 52,4775, bl = 29937.62994 as initial guesses, the nonlinear equa-

%
Using the coefficients of Frl(s) in (26.6): a

tions in (25) are solved by the Newton-Raphson method [15] and the fol-

lowing solutions are obtained at the 7th iteration with the error

~tolerance of 10_6:

ay = 20917.459536
a; = 29.981293
b1 = 957.260014

Since bO = 1.630 as in (24.1) b0 becomes

b, = 33467.93525

., F .(s) the desired low-order stabilization filter in (23.1) is
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. 4s+ .
F o (s) = 957.260014s+33467,93525 (27)

sl s2+29.9812935+20917.45956

The unit step response of the existing stabilized pitch control system
in Eq. (1.5) and the redesigned pitch control system using FSI(S) in
(27) and the Go(s) in (1.3) are shown in Fig. 4. The result is fairly
satisfactory.

An alternate approach for redesigning the stabilization filter
by direct simplification of the existing stabilization filter is pro-
posed as follows:

As it is mentioned at the beginning of this chapter, the function
of the stabilization filter is to convert the dominant data at w = 0,
W = 1.9 rad/sec. and Woo = 3.2 rad/sec. of the original unstable sys-
tem Go(s) in (3) to the assigned dominant data of Ge(s) in (2). Taking
advantage of this fact, we can directly apply the dominant-data matching
method to fit a low-order stabilization filter that satisfies the speci-

fications asrigned in Eqn. (4). Let us assume that the desired low-order

model of Pstab(s) is
b +b.s
Fp(s) = ———s (28.1)
a0+als+s

Applying the condition in (4.1) to Fsz(s) in (28.1) yields

bO
Re[PSZ(JO)] = "= 1.6
0
. - 7
. bO 1.6a0 (28.2)

Substituting (28.2) into (28.1) gives




S|9pay} snotJep 3O sasuodsay dwiri v 4nbyg
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(28.3)

1.6a +juwb

0 1

F . (jw) =
2
s2 _ 2) jwa

(a

0 1

,/ 2. 2.2
2.56a +w b]

J(ao-w2)2+u2ai

-1 wb1 -1 wa1

- tan
1.6aO a 2

|F_, Gl = (28.4)

and /Fsz(Jw) = tan

2
_7 wb,(a ~w")-1.6wa,a
= tan 1 10 01 (28.5)

2 2
l.6a0(a0—w Ytw alb1

At s = ju = j1.9 the values of lFsz(jw)l and fFSZ(jw) in (28.4) and
(28.5) respectively are matched to the corresponding values of |Fstab(j1'9)l to-

gether gnd /F (j1.9) in (4.3). Thus, we have

stab
v/2.56a(2)+3.61bi
lysz(j1.9)| = = 1.605107127
/ 2 2
V(ag-3.61)"+3.61a]
or £ (a.a..b.) = 2.56a%+3.61b2-2.576368889] (a.-3.61)°
1'%0°71'"1 AT MRah s Wit 0"

+ 3.613§] =0 (29.1)

1.9b](ao—3.61)—3.0éa a

1 01

o
and {Fsz(Jl.9) = tan 1.6a0(ao-3.61)+3.6lalb1 = 4.34591898
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or f,(a

2 0'al’b1) = 1.9b1(a0-3.61)—3.043

0?1

- 0.0759963811[1.6a,(a;-3.61)+3.61a,b,1=0  (39,2)

When s = Jug,. = j3.2 the value of {FsZ(jwec) in (28.5) is compared with

the value of /F (jmec) in (4.5). Thus, we have

stab

3.2b1(a0-10.24)-5.123031

1.6ao(a0-10.24)+10.2&alb1

/Fsz(j3.2) = tan = 7,.293349493°

or f3(a0,al,b1) = 3.2b1(ao-—10.26)-5.123031

- 0.1279849782[1.630(30—10.2A)+10.24a1bl]=0 (29.3)

Using the initial guesses obtained in (26.6) the set of nonlinear equa~

tions in (29) is solved for the unknowns a and b1 by using the Newton-

0’ %1

Raphson method,  The solutions are obtained at the 9th iteration with

-6
the error tolerance of 10 ). The solutions obtalned are

ay = 13301,999297
a; = 3.318051
b1 = 856.628596

Thus, the desired low-order model in (28.3) is

) 856.6285965+21283. 19886
Fg(s) = 3

s°+3.3180515+13301.999297

(30)

The unit-step response of the existing stabilized pitch control
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system Te(s) in (1.5) and the redesigned system that uses the low-order
filter FsZ(S) in (30) and Go(s) in (1.3) are shown in Fig. 4. The re-
sult is perfect. Comparing the unit-step response curves in Fig. &4, it
is clear that as far as the performance of the entire pitch control sys-
tem is concerned FSZ(S) in (30) is a better filter than Fsl(s) in (27).

This implies that the existing stabilization filter F (s) in (1.2)

stab

might be overdesigned. Obviously, the implementation cost of the filter

FSZ(S) is less than that of Fstab(s) in (1.2).




CHAPTER V
REDESICN OF THE STABILIZATION FILTER BY AN ALGEBRAIC METHOD

In Chapter IV of this report the original fourth-order stabi-

lization filter F (s) has been simplified to two second-order

stab

filters, Fsl(s) and Fs (s), using the dominant-data matching method

2
discussed in Chapter II. It is noticed that all three stabilization

filters, the original as well as its simplified models consist of com-

plex poles. 1t is also observed that all three filters men;ioned above l
are placed in the feed forward loop and as a result the system becomes

very sensitive to external disturbances. If alternate filters can be

designed and placed in both feed forward and feedback loops,i) the de-

signed filters may turn out to be simple transfer functions with posi- *
tive real roots and because of this it may be possible to synthesize
the filters using passive elements, and ii) the performances of the
designed system can be greatly improved. The fact that the fixed L
configuration of the compensators in the feedback loop enables the de- i
signed system to be insensitive to the parameter variations and modeling
errors will reduce the effects of external disturbances and improve

the stability of the system. Thus the redesigned feedback system has

all the advantages [14) of feedback control systems.

In this chapter the algebraic method proposed by Shieh [3] and

Chen [4] is extended and modified to redesign the pitch control system

The steps involved are summarized as follows.

Step 1. Assign the design goals using frequency-domain specifications

and model a standard transfer function, known as the standard model,

|
I
| ;s
I
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using the dominant data matching method discussed in Chapter 1l of this

thesis.

Step 2. Expand the standard model obtained in Step 1 into a standard
fraction expansion of the second Cauer form by performing repeated long
divisions as shown in (13.0) to obtain the dominant quotients. Using

these quotients obtain the matrix |H] in Equation (15). ;

Step 3. Assume the fixed configuration of compensators with unknown
parameters and determine the overall transfer function of the system. i

Thus, the overall transfer function of the system will consist of the

unknown parameters.

Step 4. Substitute the coefficients of the overall transfer function ob-
tained in Step 3 into the vectors [a) and [b] in Equation (15) and ex-

pand the matrix equation (15) to obtain a set of equations.

Step 5. Solve the set of equations obtained in Step 4 to determine the

unknown constants assigned in the compensators.

The designed system obtained by using the algebraic method has

the exact dominant quotients of the standard model. In other words,

the designed system is a good approximation of the standard model that
. has the exact assigned dominant data.

It is noticed that the original unstable system Go(s) in (1.3)
is a high order transfer function with large coefficients. Therefore,
in order to simplify the procedure, before proceeding to design the
Pitch control system by using the algebraic method, a reduced-order

model of Go(s) is determined by using the dominant-data matching method.

capy DRSS 0




The unstable transfer function Go(s) in (1.3) can be decomposed

into a stable function and an unstable portion as follows:

Go(8) = Sema.571y Tol®) G1-1)

where the stable portion To(s) is

T (s) = 324332.316(s+0.1933) (s+65) (s+1500)
0 (s+3.175)(s+87.92j95.5) (s+112.5) (s+1385)

(31.2)

The pole at the origin and the unstable pole at s = 2.921 are consider-

ed to be the dominant poles of the system. Therefore, they are retained

*
in the simplified model Go(s) of Go(s), or

1 x
s(5-2.971) To(s) (31.3)

Gy(s) = Gy(s) =

Where Tg(s) is the reduced-order model of To(s) obtained by us-
ing the dominant-data matching method. The frequency response data of
To(s) that are used as dominant data for the transfer function fitting
aregain margin, phase margin, phase-crossover frequency, gain-crossover

*
frequency, and the final value at w = 0. The To(s) obtained is

_496.8548975°+192897.961011s+37103.33375
3 2416552, 3000035+50595. 685093

Tg(s) = (31.4)

s +117.073733s

*
The To(s) obtained is a low-order model of To(s) with smaller

coefficients. Thus, the design process can be greatly simplified.

2
There foreg? () = 496.8548975°+192897.9610115+37103.33375

+2246.4167952-147789.9961s
(31.5)

s2+114.152733s"

+16210.3.‘.763s3
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Following the steps proposed at the beginning of this chapter
the first step to design a system by the algebraic method is to determine
the standard model. In this case the standard model Tr(s) has been de-
termined earlier in Chapter 111 and is given in (9). Writing Tr(s) once

again and expanding it in a continued fraction expansion yields

I (sy = 6:37807420.556615+0.2434665

r 6.37807+10.462225+1 2590085 2+s>

- 1
n l+ S
S
h2+
s
+
h3
S
h4+
S
h5+ -
6
where
h1 =1
h2 = ~0.631845015
h3 = ~0.476189214
hh = 14,799589050 (31.6)
h5 = -0.102867450
h6 = -13.924278040
l In the next step a series compensator Gl(s) and a parallel compensator
Gz(s) are assigned as shown in the block diagram of Fig. 5-1. Gl(s)
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X5 + X Y(s)
_ 6 7 o * )
Gl(s) T T s + Xg Go(s) >
X s2 + Xy8 + X
3 4 2
Gz(s) == PrR—
s° + Xys + X
1 2
Fig. 5-1. The Block Diagram of a Redesigned System with Fixed
Configuration Compensators
R(s) 1 Y(s)
- ; 61 (s)6,(s) 65(s) - —~ -

Go(s)

Fig. 5-2. The Modified Block Diagram of the Redesigned System

Figure 5 The Block Diagrams of the Redesigned System Using
Algebraic Method

)
i
:
¢
t
}
.
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and G,(s) are assumed with unknown parameters X i=1,2,...,7 as

and

in Fig.

where

x6s+x7
Gl(s) T oiw (32.1)
5
2
x3s +xas+x2
GZ(S) = (32.2)
s +xls+x2

The overall transfer function Tf(s) of the feedback system shown

5-1 is

Tf(s) = g (32,3)

ag = 37103.33375x2x7

a; = l92897.961011x2x7+37103.33375(x2x6+x4x7)-147789.9961x2x

a, = A96.854897x2x7+192897.961011(x2x6+x4x7)

+ 37103.33375(x4x6+x3x7)+2246.41679x

5

2%s
- 147789.9961(x,+x %)

a, = 496.854897(x2x6+x4x7)+192897.961011(xax6+x3x7)
+ 37103.33375x3x6—147789.9961(x]+x5)
+ 2246.616/9(x2+x1x5)+16210.32763x2x5
a, = 496.854897(xax6+x3x7)+192897.961011x3x6-167789.9961
et 2 .
+ 2--6.61679(x1+x5)+16 10.32763(x2+x1x5)+11b 152733x2x5
a5 = 496.856897x3x6+2246.&1679+16210.32763(x1+x5) (32.4)

+ 114.152733(x2+x1x5)+x

2%s
= 16210.32763+114.152733(x +x,)+x,+x

X

175

i.
;i
1
i
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114.152733+x1+xs

1

37103.33375x2x7

192897.961011x2x7+37103.33375(x2x6+x1x7)

a96.85&897x2x7+192897.961011(x2x6+xlx7)

37103.33375(x1x6+x7)

496.854897(x2x6+x1x7)+192897.961011(x1x6+x7)+37103.33375x

496.85&897(x1x6+x7)+192897.961011x

6
6

496.854897x6

¢

0

to match the seven unknown parameters, xi, i=1,2,...,7

in (32) for this type 'l' svstem we need eight quotients hi’ i=1,2,...,8

Therefore, the third order standard model in (9) with the quo-

Tr(S) =

tients hi given in (31.6) has to be amplified to a fourth-order system.

This is done by inserting h, = 100 and h8 = 0.1 as shown below.

7

6.37807+20. 5566 15+0. 2434665 °

6.37807+10.A6222s+1.25900852+s3
- 1
h]+ S .
h2+ )
h3+ - _
h4+ ]
h5+ "—'——h
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L1
h1+ 2 )
h2+ ]
h3+ .
h4+ )
h5+ )
h6+
h7+ — ,
h8
=T (s) = 63.78098007+211.8989926s+22.87561717sz+0.343/4653

63.78098007+110.95452255+23.0091755152+11.30110515 s3+sa

It [15] has been shown that Ta(s) in (33) is a good approximation

of the original standard model Tr(s) in (9).

Substituting the hi’ i=1,...,6 in (31.6) including h7 = 100 and

h, = 0.1, the matrices [“1] and lH2| in (5) are obtained next.
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Substituting the unknown constants ag, i=20,1,...,7, bi’ i=20,1,...,7

and lHl] and [H7] obtained above into (15) yields a set of equations in

terms of a; and bi as follows.

(bl

(Hjla]

17 () (a)

or [Hzl[b] = [Hllla]

or expanding the above matrix egquation yields

fl(ai’bi)
fZ(ai'bi)
f3(ai,bi)
fh(ai‘bi)
fglaabyp)

folagaby)

= a,-1.1565286a —0.45805621(aa—bh)-0.4209&152b

where i=20,1,...

b0—0.6318422396(b1°al) =0

al+0,30087727(az—bz)—0.52380951b1 =0

b1+7.12031&1b2+4.4528546(b3—a3)-14.167729a2 =0

2 3 2
0.43]57511)3 =0
2 -
b2+1.259011b3+10.46._223b4+6.378098(bS 35)
0.2434600033—20.55667614 =0

a3+23.18967lab+2055.2089as+637.8098(a6—b6)

100.42096b3-125.4695b4—1045.7642b5 =0

b3+l].301105b4+23.009176b5+110.95452b6

63.78098(b7-a7)-0.3&346a4—22.875617a —211.89899a6 =

5

0
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Now, substituting the values of a, and bi in terms of x

i i’

i=1,2,...,7 from (32.4) yields a set of nonlinear equations shown be-

low. It is noticed that as a, = b0 the eduation fl(ai’bi) = ao-bo = Q

gives no information. The rest of the equations are

fl(xl,...,x7) = x2x7+0.6318422396[x7(xa—xl)-3.98319992x2x5] =0
(33.1)
f2(xl,...,x7) = x7(8.22822291x2+8.522553136xh—6.939879587xl

+ 33-1)+x2(1.582676549x6-13.17807554x5) ]

+ xé(xa*xl)-3.983l99922(x2+xlx5) =0 (33.2) 1

3 1,...,x7) = xz(-12.7l36l621x6—x5)+x7(13.58355291xl
+ 1.820964317x2—26.29716913xa)+10.798&&539(x1x6+x7)

- 13.31248704(x4x6+x3x7)+6.327224282(x1+x5)

+ l.588477708x6(1—x3)+20.03527143(x2+x1x5) =0
(33.3)

£ (x ) = x7(x2+668.4670071x4—281.48094x1)+x6(386.9860673x

ACIERRRTE

2 4

“

+ 362.767005-456.258273x3)—647.2403649(x4x6+x3x7)

- 57.S3603068x2x5—548.5188427(x2+x1x5)

+ 235.861385(x1x6+x7)+235.2945185+590.5096275(xl

+ x.) =0 (33.4)

fs(x X,) = 2357.408023(x1x6+x7)+x6(1598.839931x2+17096.15228

1000 %y
- 32881.95063x3)+x7(4.l6745091x2+1599.839931x1-x4)
- 472.6735322(x4x6+x3x7)+24996.982&2-939.0287936()&1

+ x5)-2765.323026(x2+x1x5)-52.O7771943x2x5 =0

(33.5)
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fb(xl,...,x7) = x6(-99.6209615x +11132,91981x.~-57256.87822)

2 3

+ x7(x4-100.4209615x1)+411.427&907(x4x6+x3x7)
. + .
+ 67006 93001(x1+x5) 1234 S67433(x2+x1x5)
+ 42.69011171x2x5 + 23203.53455-39112.69694(x1x6

+ x7) =0 (33.6)

f7(xl,...,x ) = 496.85&897(x2x6+xlx7)+198512.9704(x x +x7)

176

+ 2228495.695x6—170.6497831(x4x6+x3x7)
- 77618.59617x3x6-3442861.087-395845.4335(x1+x5)

- 8390.812346(x2+x1x5)-—62.08251489x2x5 = 0 (33.7)

Equation (33) is a set of high order nonlinear simultanecous equations
which is very difficult to solve. However, with proper initial guesses
the Newton-Raphson [15] method can be applied to solve it. Therefore,
the problem lies in finding an appropriate set of initial guesses. In
this case, the following method is suggested for estimating che initial
guesses.

As mentioned earlier, the block diagram of the structure of the
desired fixed configuration control s.stem is shown in Fig. 5-1. With-
out affecting the overall transfer function of the system, this struc-
ture can be modified into a form as shown in Fig. 5-2. The overall

transfer function of this structure is

| = .
11(3) = Tz(s) Gz(s) (34.1)

where %
Gl(s)Gz(s)Go(s)

Tz(s)

1+Gl(s)02(s)G;(s)
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*
Where Go(s), the approximate transfer function of Go(s), is

given in (31.5).

The purpose is to determine Gl(s) and GZ(S) such that the re-

sponse of Tl(s) becomes close to that of the standard model Tr(s) in

(9). Replacing the series compensator Gl(s)Gz(s) in Fig. (5-2) by the

designed stabilization filter Fsz(s) in (30) the resulting transfer

function Tl(s) in (34.1) is equated to the standard model Tr(s) in (9)

as follows.

Tl(S)
or TZ(S)
or Gz(s)

*
or GZ(S)

force T_(s)
FEEEE T
] —
o T
) Tz(s)
B T (s)
*
. 1 Gl(s)Gz(s)Go(S)
= GZ(S) = T (s) " ]
') 146 ()G, (8)Gy (s)
%
1 F(e6y(s)
%) i, (365 ()
1 789677630.6+4137269440s

= T_(s) 1789677630, 6+2171367017s

+175816571. 16°+425620. 11285

+2052080'30.9sz+215915050.553

+154492. 6845 +29891.09151s

5

+117.47O78456+s7

]

(34.2)

h—
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Substituting Tr(s) in (9) into (34.2) and simplifying, the appropriate

*
transfer function GZ(S) of G2(s) is obtained.

5.036619205x107+3. 46495752x10 %s+4.540060393x 10152

a 10 10 2
5.036619205x10°+3,008227329%x10" "s+4.613716606%10""s

*
Gz(s) =

+7.840679235%10%s 344. 363076841x10 s +1.763524302x10°s°

+6.124169121x107s3+4. 498497844x10°s%+8. 512494768x10” s°

+4.256201128X10536

+9.985659768<10°5049. 698650697x10°s +49. 1568119s5+0. 2434665
(34.3)

*
A set of dominant quotients hi of Gz(s), given below, are de-
termined by expanding (34.3) into a continued fraction of the second

Cauer form

h, =1

—_
=
"

-1.102755917

-0.1287948973

—_—
=
il

hA = 5.593229805

h5 = 0.1338916858

h6 = .. (34.4)
hig”

Substituting the first five quotients h1’h2""’h5 into (13.5)
* *
gives a second order approximate model Gz(s) of the approximate parallel

*
filter Gz(s) in (34.3) as
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. 2 2
* . 99497 +0.7 .
¢ (s) = 02 94929057s°+0.7394973923s74+0,1058245527 (34.5)

s +0.643533679s54+0.1058245527

Kk *
62 (s), the approximate model of Gz(s), is also an approximate model of
G,(s) in (32.2).
*
The approximate model Cl(s) of the series compensator Gl(s) in

Fig. 5-1 can be obtained as follows

_Fa2(8) 8566285065 >+21834. 4682152413787, 1076s
*%
1 G, (s)  0.994929057s +4.040722745s>

+2252.284999
+13237.1051252+9837.1449195+1407.678125

(35.1)

To obtain a set of dominant quotients Equation (35.1) is expanded into
a continued fraction of the second Cauer form. Some of the quotients

obtained are

hl = 0,625

h2 = 1.845828612

h3 = 0.0839039052

h& =

h8 = ... (35.2)

The first three quotients hl’ h2, h3 are substituted into (17.3),
*

* *
which gives G1 (s), an approximate model of G](s) as well as of GI(S)

* %
in (32.1). G1 (s) obtained is

cmme GEN UEN) E S 00—
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*% o 1.410628426s+0.2184671685
6) (s 6+0.1365419803 (35.2)

Comparing (32.2) with (34.5) and (32.1) with (35.2) we have a set of
initial guesses to solve the set of high order nonlinear equations in

(33). Thus, the set of initial guesses is

*

x1 = 0.643533679
*

x2 = (0.1058245527
*

X3 = 0.994929057
* (36)

XA = 0.7394973923
*

x5 = 0.1305419803
*

Xb = 1.410628426

and

+

x, = 0.2184671685

Using these initial guesses the Newtcn-Raphson method [15] is
applied to solve the nonlinear equations in (33), It is found that the
Newton-Raphson method converges to the desired solutions, given below,
at the 14th iteration with the error tolerance of 10-6. The solutions

are

0.503850

=%
1§

= 0.059928

x
i

1.051503

®
“

0.580016

*®
[}

e e o e o
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= 4,
x5 831826
X = 1.885577
Xy = 6.744450

Therefore, the desired compensators Gl(s) and GZ(S) are

 1.885577s+6.744450 _ 1.885577 (s+3.57688)
6, () = = 14.831826 = +4.831826 (37.1)

and

1.05150352+0.5800165+0.059928 - 1.051503(s+0.13769) (s+0.41391)

s240.503850s+0. 059928 (s+0.19244) (s+0.311405)
(37.2)

Gz(s) =

The unit step response curves of the existing stabilized system
Te(s) in (1.5) and the redesigned system using the compensators Gl(s)
and Cz(s) in (37), and Go(s) in (1.3), are compared in Fig. 4. The re-
sult is satisfactory.

It is interesting to note that Gl(S) and Gz(s) in Eq. (37) are
positive real functions with positive real poles and zeros, which makes
it possible to realize the compensators Gl(S) and GZ(S) using passive

elements, whereas, the existing stabilization filter F;tab(s) is a non-

positive real function and it is realized by using active elements.




CHAPTER VI

CONCLUSION

The existing stabilized pitch control system has been redesign-
ed by redesigning the existing stabilization filter. Two computer-
oriented methods, a dominant data matching method and an algebraic

method, have been presented to redesign the existing stabilization

filter. Thus, various low-order stabilization filters have been ob-
tained. As a result, the implementation cost of the missile svstem is
reduced.

The proposed dominant-~data matching method can be used for

various purposes. For example, when the spécifications or the design
goals of a control system are given, the proposed method can be used

to obtain a standard transfer function, whiéh significantly simplifies
the design process in the frequency domain. When a high-order transfer
function is given, various low-order models can be obtained with the
help of the dominant-data matching method. The method can be used in

the problems of identification as well. The great advantage of this

method is that the transfer functions obtained by using this method have

the exact assigned frequency-domain specifications.

AL G L

The algebraic method has been applied to achieve the advantages

of the feedback control system so that the performances of the redesign-
ed piteh control system can be greatly improved.

The application of the dominant-data matching method always
gives rise to a set of nonlinear equations which can be solved if a set
of proper initial guesses is known. In this connection, various methods

70
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have been discussed for estimating a set of proper initial guesses.
Finally, it is important to mention that the proposed computer-

aided design methods can be used to design general control systems.

i
|




—

[1]

(2]

(3]

[4]

(5]

(6]

(7]

(81

(91

{10]

[11]

12]

f13]

REFERENCES

J. T. Bosley, ''Digital Realization of the T-6 Missile Analog
Autopilot," Final Report, U. S. Army Missile Command, DAAK40-
77-C-0048, TGT-001, Mav 1977.

J. E. Gibson and 2. V. Rekasius, "A Set of Standard Specifi-
cations for Linear Automatic Control Systems,'" AIEE Trans.
Application and Industry, pp. 65-77, Mav 1961.

L. S. Shieh, "An Algebraic Approach to System Identification
and Compensator Design," Ph.D. Dissertation, University of
Houston, Houston, Texas, December, 1970.

C. F. Chen and L. S. Shieh, "An Algebraic Method for Control
System Design," Int. J. of Control, Vol. 11, pp. 717-739,
1970.

J. G. Truxal, Control System Svnthesis, McGraw-Hill Co., New
York, pp. 76-87, 1955.

V. Del Toro and S. Parker, Principles of Control Systems Engi-
neering, McGraw-Hill, New York, pp. 665-669, pp. 278-302, 1960.

G. S. Axelby, 'Practical Methods of Determining Feedback Con-
trol Loop Performance," Proc. 1lst IFAC, pp. 68-74, 1960,

V. Seshadri, V. R. Rao, C. Eswaran, and S. Eappen, "Empirical
Parameter Correlations for the Synthesis of Linear Feedback
Control Systems," Proc. IEEE, Vol. 57, pp. 1321-1322, July
1969.

K. Chen, "A Quick Method for Estimating Closed-Loop Poles of
Control Systems," Trans. AIEE, Applications and Industry, Vol.
76, pp. 80-87, Mav 1957,

C. F, Chen and L. S, Shieh, "A Novel Approach to Linear Model
Simplification," Int. J. of Control, Vol. 8, No. 6, pp. 561-
570, 1968.

M., F. Hutton and B. Friedland, '"Routh Approximations for Re-
ducing Order of Linear Time-Invariant Systems," IEEE Trans.
Automatic Control, Vol. AC-20, pp. 329-337, June 1975.

Y. Shamash, 'Linear System Reduction Using Pade Approximation
to Allow Retention of Dominant Models,” Int. J. of Control, Vol.
21, pp. 257-272, 1975.

B. Carnahan, H. A, Luther, and J. O. Wilkes, Applied Numerical
Methods, John Wiley & Sons, New York, pp. 319-329, 1969.

72




[14]

(15]

(16]

(17]

(18]

[19]

73

G. J. Thaler, Design of Feedback Systems, Dowden, Hutchinson
& Ross, Pa., 1973,

IBM S/370-360 Reference Manual IMSL (The International Mathe-
matical and Statistical Library),

C. J. Huang and L. S. Shieh, 'Modeling Large Dynamical Svstems
with Industrial Specifications," Int. J. of Systems Science,
Vol. 7, Wo. 3, pp. 241-256, 1976.

E. C. Levy, "Complex Curve Fitting,"” IRE Trans. Automatic
Control, Vol. AC-4, pp. 37-44, May 1959.

E. J. Davison, "A Method for Simplifying Linear Dynamic Sys-
tems,'" [IEEE Trans. Automatic Control, Vol. AC-11, pp. 93-101,
January 1966. .

E. J. Routh, A Treatise on the Stability of a Given State of
Motion, MacMillan and Co. Ltd., London 1877,

e

|
b
!
!
+




INT. J. CONTROL, 1978, voL. 27, No. 2, 245-259

A matrix in the block Schwarz form and the stability of
matrix polynomials

LEANG-SAN SHIEHYt and SHAILENDRA SACHETI{

A matrix which consists of block elements is established in the block Schwarz form
via & lincar transformation. The transformation matrix constructed by Chen and
Chu iz modified and extended for transforming the block companion form to the
block Schwarz form. A sufficient condition is derived for determining the stability
of a multivariable system whose characteristics are expressed by a matrix polynomial.
The matrix polynomial may or may not be symmetric.

1. Introduction ]

The properties and applications of the Schwarz matrix, which has scalar
elements, has been investigated by various authors (Schwarz 1956, Parks 1963,
Wall 1948, Anderson et al. 1976, Barnett and Storey 1970), and the transforma-
tion matrix, which relates various matrix forms and the Schwarz form, has
also been established by numerous authors (Butchart 1965, Chen and Chu
1966, 1967, Barnet and Storey 1967, Loo 1968, Power 1969, Datta 1974,
Sarma et al. 1968). Chen and Chu (1966, 1967) constructed a transformation
matrix which links the Schwarz form and the companion form by using the
Routh array elements (Routh 1877). However, all existing methods (Schwarz
1956, Parks 1963, Wall 1948, Anderson et al. 1976, Barnett and Storey 1967,
1970, Butchart 1965, Chen and Chu 1966, 1967, Loo 1968, Power 1969, Datta
1974, Sarma et al. 1968) deal only with the system matrix which has scalar
elements but not block elements. In this paper a matrix which consists of
block elements is constructed in the block Schwarz form and a linear transforma-
tion matrix which consists of block elements is established to transform the
matrix in the block companion form (Shieh 1975) (the block phase variable
form) to the block Schwarz form. A sufficient condition is then derived to
determine the stability of a multivariable system whose characteristics are
described by a matrix polynomial (Shieh 1975, Shieh et al. 1976). The matrix
polynomial may or may not be symmetric.

2. A transformation for a matrix in the Schwarz block form
Consider a set of linear, time-invariant, ordinary differential equations in
the differential matrix polynomial form

n+1
XY B,Di-1X(t)=[0], B

i=1

D'i‘IX(O)=[C!‘_1], i= l) 29 e (l b)

=1 (1 a)

n+1

where X(t) is the m-dimensional state of the system. The B, are m xm real
constant matrices and the differential operator D is D=d/dt. The matrix I

Received 20 October 1976.
+ Department of Electrical Engineering, University of Houston, Houston, Texas
77004, U.S.A.
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246 L. 8. Shieh and S. Sacheti

is an identity matrix and {0] is a null matrix. The corresponding state equa-
tion of eqn. (1) in the block companion form is

[¢]=[B]x] (2a)
[+(0)] = [«] 2b)
where
Y I 0 0 0 )
0 0 1 0 . 0
[B]= . . . . . .
0 0 0 0 . I
| - B, —Bz -B; -B, - -B,]

The dimenstons of the matrix [B], each block element in the [B], and the state
vector [x] are (nxm)x {nxm), m xm, and (nxm) x 1, respectively. The [B]
is the matrix in the block companion form or the block phase variable form
(Shieh 1975).

Equation (2) can be transformed into the block Schwarz form by using the
following linear transformation [K,] :

[y]=[K,][x] (3
and
(9)=[K,\)(BIK,]{y]
=[4]ly] (4)
where
[ I . 0 0 0 0 0 007
CoriCpsa- I 0 0 0 0 o0
0 . 0 1 0 0 0 00
Cp_gi™? Cpogs* ColCyq 0 I 0 0 00
&,]=
0 . 0 Cei 1 Gy 0 1 0 00
Cr 51 Chsqc CytCyy 0 Cy 10, 0 1 00
0 ’ 0 Cy 71 Cyy 0 Cyy1Cy, 0 10

L : + Cy 10y 0 Cy 1 Cy 0 Cy7 1 Cyy 0 1 |
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and
[0 I 00 0 0 ]
-4, 0 I o0 0 0
[A]=] 0 -4, 0 I - 0 0
o 0 00 - o I
| 0 0 00 - -4,, —-4,]

The dimension of each block element in the matrix {4 ] and the matrix [K,] is
mxm. The [Ad]is the matrix in the block Schwarz form. The linear trans-
formation matrix [K,], which relates the coordinates [z] and [y] in eqns. (2)
and (4), is constructed by following the approach proposed by Chen and Chu
(1966). The block elemenis (; ; having dimension m x m in eqn. (3) can be
obtained from the following matrix Routh algorithm and the matrix Routh
array (Shieh and Gaudiano 1974, Shieh et al. 1976).

Before performing the matrix Routh array we define I=(n/2)+1 if n is
an even number; otherwise, I=n+1/2, and the double subscripted block
elements C, ; and C, ; hecome :

CI.J‘= n+3—2j> _7:=1, 2,3, ..,1
02,5=Bn+2—2)$ 1= l, 2’ 3, veey { (5 Cl)
1u=

The B; are the m x m real constant matrices shown in e jn. (1), The matrix
Routh array and the matrix Routh algorithm are

H.=C..C, -1 LCu Ch Cy3 Oy
H: = C:Cii—l 4021 Cyy Cyy Cyy
H,=CyCy ! Lgm gaz gas '
H,=C,Cy! 4041 042 “43 .

5=C5Ceq? LCH 052 . . b (5 b)
Hg=CgxCopy! LCBI 2

7
(o)

H =C ,C -1 ml

2= Cn1lnigy Z.CMU J

where
Coi=Ciagn—Hi oCi 1y j=1.2,.., i=38,4,..
Hi:oi,l(0i+l,1)_lv t=1 ,..,n
det (Cyyy,1)#0

The matrices H, in eqn. (5 b) are called the matrix quotients. Performing a
new linear transformation

[2]=[K,]ly] (8)
2F2
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on eqn. (4) yields an alternative matrix [#'] in the block Schwarz form as ]
follows :
[2]=[K, A} K,]"z]
=[F][z] (7a)
where
[C.., 0 0 0]
0 Cuyy = 0 0
[Kz] = . . . . . (71b)
0 0 - Cy O
L 0 0 o Cy]
and
[0 H, ™ 0 0 0 0 0
~H, 0 H,, ' - 0 0 0 0
0 -H, 7! 0 0 0 0 0
[F]= - (Te)
0 0 0 -i o0 Hst 0 0
0 0 0 —H- 0 H, 0
0 0 0 . 0 -Hy! ....... 0 ------------- H 1‘1

The [K,] is a block diagonal matrix having the diagonal block elements ob-
tained from the block elements C;,,i=1, 2, ..., which are in the first column
of the matrix Routh array in eqn. (5 b), while the matrix [F] is the required
matrix in the block Schwarz form which can be constructed by using the matrix
quotients H, i=1, 2, ..., obtained from the same matrix Routh array. A
similar matrix (Schwarz and Friedland 1965), which was formulated in the
Schwarz form but not in the block Schwarz form, was used to prove the
stability of a linear system by Parks (1963).

The linear transformation matrix [K ], which links the coordinates [x] in the
block companion form and the coordinates [z] in the block Schwarz form, is

[z]=[K,]K,]){=]
=(K][=] (8a)
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where
,'ll"('"“'l .o v ] (] 0 0 0
H, 0.y © 0 v 0 0 0 0
0 - HgCy U v 0 0 0
(K =11, {p 32 * - 0 HOe 0 0 U 0 (84)
0 S Hey 0 P HC, 0 0 0
H, sy © + 0 HCui 0 L HC, 0 0
0 o Hyy 0 HORE 0 HOy 0
| - C 0 HCxi 0 THCui 0 HCy |

The matrix [K] is a block triangular matrix. All the block elements in eqn.
(8 b) can be directly obtained from the matrix Routh array in eqn. (55). For
example, the block elements in the main diagonal, which are shown by the first
dotted diagonal line, are obtained by the respective products of the matrix
quotients H; and block elements C; , in the first column of the matrix Routh
array. The block elements of the first lower diagonal in the [K] are null
matrices, and the block elements of the second lower diagonal in the [ K}, which
are shown by the second dotted diagonal line, are determined by the respective
products of the matrix quotients H; and the block elements C, , in the second
column of the same matrix Routh array, ete. The sizes of the matrices [F]
and [K] are determined by the degree of the matrix polynomial and the order
of the matrix coefficients in eqn. (1). For instance, when the degree of a
matrix polynomial is n =4 and the dimension of each matrix coefficient is m,
the corresponding 4m x 4m square matrices [F) and [K] are taken from the
right-hand side lower corner of the matrices [F'] and [K] in eqns. (7 ¢) and (8 b).

3. A sufficient condition for the stability of a matrix polynomial

In a single variable system the Routh criterion (Routh 1877) is applied to
the characteristic polynomial of a linear system for determining the absolute
stability. In other words, the scalar polynomial in the form of eqn. (1) is
arranged in the Routh array in eqn. (5 b), then the Routh criterion is applied.
1f the scalars C, , in the first column of the Routh array have no sign changes or
all elements C, ;, 1=1, 2, ..., are positive real, then the system is asymptotically
stable. Since the Routh algorithm and the Routh array have been successfully
extended to the matrix Routh algorithm and the matrix Routh array (Shieh
and Gaudiano 1974, Shieh et al. 1976), aiso a positive definite matrix (Bellman
1970) is commonly considered as a natural generalization of a positive number,
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it is interesting to ask whether or not a multivariable system whose charac-
teristic matrix polynomial shown in eqn. (1) is asymptotically stable if the
block elements C, ;, =1, 2, ..., in the first column of the matrix Routh array
in eqn. (5b) are positive definite matrices. In other words, can we directly
extend the Routh criterion (Routh 1877) to the matrix Routh criterion ?
This paper will partially answer this question.

Because the stability of a system is invariant under the transpose operation
of the system matrix, we consider the following system :

[41=[F"1lq]
=[G1lq] 9

The matrix [F] in eqn. (9) is defined in eqn. (7) and the transpose of the matrix
[F] is defined as [G). If the matrix quotients H, in eqn. (5 b) are positive-
definite symmetric and real matrices, then we can consider the following
quadratic equation (Kalman and Bertram 1960, Barnett 1971) :

: v=[¢"1[Pllg] (10a)
where
[H, © 0 07
0 H,, 0 o
[P]= . .
0 0 H, 0
0o o 0 H,|

The derivative function ¢ is
v=[¢"]I[PG+ GTP]lg]

= —[q"1[Q]lg] (10b)
where
[0 -1 0 - 0 OW 0 0 0 - 0 07
1 0 -I - 0 o 0 00 - 0 O

[PI¢l=|0 I o - o o [@=|0o 0o 0 - 0 o

o o o - 0 -I o 00 - 0 0

0 0 o0 - I -I] 000 - 0 2/]

L

The v function in eqn. (10 a) is in a positive-definite quadratic form and the ¢
function in eqn. (10 b) is in a negative-semidefinite form. Therefore the system
in eqn. (9) or in eqn. (1) is asymptotically stable. From the above derivation
we obtain the sufficient condition that a multivariable system, whose charac-
teristic matrix polynomial has the form shown in eqn. (1), is asymptotically
stable if the matrix quotients H, in eqn. (5 b) are real symmetric positive-
definite matrices. From eqns. (24) and (7¢) it can be observed that the
B,(=H,'=C,) must be symmetric and positive-definite for the sufficient
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condition to apply. It is also noted that this sufficient condition deals only
with H; and not C; ;. This implies that, if a system is asymptotically stable,
the block elements C;,;, i=1, 2, ..., in the first column of the matrix Routh
array and the B, in eqn. (1) are not necessarily symmetric and positive-
definite matrices. In other words, a positive-definite matrix is not necessarily
a natural generalization of a positive number, and the necessary and sufficient
condition of the Routh criterion (Routh 1877) cannot be completely extended
to the matrix Routh criterion for general cases.

On the other hand, the necessary conditions for asymptotic stability due
to the Routh criterion (Routh 1877) can be partially extended to the case of
matrix polynomials. The necessary conditions are described as follows :

(i) The determinant of B, in eqn. (1) is non-zero.
{ii) The determinants of B, _, and B, in eqn. (1) have the same sign if the
determinant of B, ,(=C,,) is non-zero.

These conditions can be easily verified from the basic laws of algebra. Thus,
in this paper, we have partially extended the Routh criterion (Routh 1877) to
the matrix Routh criterion for determining the asymptotic stability of a class
of matrix polynomials.

Sometimes in applying the approach proposed in this paper difficulties may
be encountered in calculating the matrix quotients H; in eqn. (5b). This
implies that if any C, ; in eqn. (5 b) is singular, then the H, cannot be obtained
to determine the stability of a matrix polynomial. This limitation can be
remedied by multiplying the original matrix polynomial, defined as 7'(s), by a
polynomial matrix defined as E(s), where the roots of the determinant E(s) have
negative real parts. Then we apply the matrix Routh procedure to the
modified matrix polynomial T'(s)E(s) or E(s)T(s). It is noted that the stability
of the original system is reserved because the stability of a system is invariant
under this modification. An alternative way is to perform transformation
8—1fs to the T'(s) and then applying the matrix Routh procedure to the
modified matrix polynomial defined as T,(s)(=7T(s)|g~15)- In other words,
the C, ; and C, ; in eqn. (5 a) are rewritten as follows :

Cni=By, forj=1,23,..
Cy;=B, forj=1,2,3,..
Again, the stability of the original system is invariant to this modification and

the numerically ill-conditioned problem (i.e. C;, is singular) can be solved.
Examples are established in this paper to show the procedure.

4. Tllustrative examples
4.1. Example 1
Consider the following differential matrix polynomial :
n+l=5

;l B, D\-1X(t)=[0] (11)

or
(€3 (6]
B, X(t)+ B, X(t)+ B, X(t) + B, X(t) + B, X(¢)

4) (3)
=0, X(8) + Cgu X (8) + Cpo X (1) + Cau X (0) + CyX(t)=[0]
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where

1 0
Cn=B;= ’
0 1

-37-05 -788 - 105
Cra= By = Cup=B,=

33 65 —-0-1

2 1 —43-1
Co=B,= Cp=8B,=
1 1 —6-05

-23
—-0-6

— 946
-16-3

A matrix in the block Schwarz form and the linear transformation matrix which
transforms the block companion form to the block Schwarz form are required
to be constructed, and the stability of the system is of interest.

Arranging the matrices B, in eqn. (11) in the matrix Routh array in eqgn.

(5 b) results in the following :

1 0 -37:05 -—-1788
Cu = Clz=
0 1 33 65

.1 ~=1 -10-5
H1= Cxa":
-1 2 —-0-1

2 1 —43-1 —94-6
021 = Cyo=
1 1 -605 -16-3

0 -—-05 —-10-5
Cal""’ Caz=
2 3 —-01

1125 025
Hs=
025 05

~10-56 -23
Csl=
-0-1 —-0-6

-23

-0-6

—-23

—-06

)

|

[ (12)

J

The matrix quotients H,i=1,2,...,4, in eqn. (12) are positive-definite
symmetric real matrices ; therefore the system is asymptotically stable.

It is
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noted that the block elements C, ;,i=1, ..., 5 in the first column of the matrix

Routh array in eqn. (12) are not all positive-definite symmetric real matrices.
The state equation in the block companion form is

(o)l )
o )0
PSRN

J

0 0 0

10-5 23 431 946 37-05
|\ 01 06 6-05 16-3 -33
and the state equation in the block Schwarz form is

2]=[F](z]

(o)l
[
(o)

(o

It is interesting to note that the characteristic equation

|8l -B|=|s]I—F|=
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and the roots which have negative real parts are, respectively :

88+ 387 + 28-95s% + 79-35s% + 2065% + 458-8755°

+221-055%+48-45+4=0

—0-0239155 + j4-27199
—0-0784809 + j2-95637
—~0-189163 + j0-165319 (14 ¢)
—0-177194

—2:23969

The linear transformation matrix between the [x] and [z] coordinates is

(z2]=[K][x] (15)

S TERR TS I
e et
S TR TR I
e S 1]

4.2, Example 2

Consider the following transfer-function matrix [7'(s)] which is expressed
by the product of two relatively prime polynomial matrices [N(s)] and [D(s)]?
or

[(T(®)]=[N(E)ID($)]? (16)

The characteristic matrix polynomial [ D(s)] is

[D(s)]= B+ B+ Bys?+ By + B,
=C1y8" +Cy 88+ 018 + Cyg8 + Cyy
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It is interesting to determine the stability of this system. Following eqn.
{5 b) yields the matrix Routh array as follows :

The matrix quotients H;, ¢=1, ..., 4, in the matrix Routh array are positive-
definite symmetric real matrices. Therefore the system is stable. It is
observed that the block element Cy, in the first column of the matrix Routh
array is not symmetric.
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4.3. Example 3

Consider the stability and the structure of the matrix Routh array of the
following matrix polynomial 7T'(s) are of interest :

T(s)= B3+ Bys?+ Bys+ B,

=C'n’ 8B40y 2+C, s+Cg =0 (18 a)

01 1 0
Cy'=B,= , Cr'=B,=

1 0 0 1

1 1 1 0
021' = Ba = ’ sz' = Bl =

1 1 01

The determinant of B,(=C;’)=—1 and that of By(=Cy’)=1. From the
derived necessary conditions for asymptotic stability we conclude that the
system is unstable because the determinants of B, and B, have different sign.
Further study of the stability is not necessary. It might be interesting to see
the corresponding characteristic equation of this system which can be written
as follows :

where

det T(s)= —5%—255+3s2+ 25+ 1=0 (18 )

Because the first and the last coefficients, which are the determinants of B,
and B, respectively, have different sign, therefore the system is unstable.
In order to study the structure of the matrix Routh array of this unstable
system and the numerically ill-conditioned problem (i.e. C;, is singular) we
apply the matrix Routh algorithm in eqn. {5) and use the C, ;" in eqn. (18 a).
The matrix Routh array cannot be obtained because C,,’ is singular. This is a
numerically ill-conditioned case. Since the stability is invariant between the
original system 7'(s) and the modified system 7T (s)(=T(s)|,~14) We can
construct the matrix Routh array for the 7';(s). The T',(s) can be written as
follows :

Ti(8)=T(8)|s+11s=Ca' #+C1y' $*+Cy’ s+Cy/
=084 Cy82+C 8+ Cpe=0 (18 ¢)

1 0 1 1
Cu = ’ Clz =
0 1 1 1

where

.
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The corresponding matrix Routh array is

1 0
H2=021031_1=( q (184d)

0 1
Hy=CyCy = ( )
1 0
0 1
Cn=( >
1o )

Although the C,, is singular, we can determine all the H/’s. It is observed
that the H, and H, are symmetric and positive definite matrices, while the
H, is a symmetric and non-positive definite matrix.

An alternative method can be described as follows. Let us construct a new
matrix polynomial T,(s) by multiplying a matrix polynomial E(s)=(s+1)I to
the T'(s) and then defining the matrix coefficients as C; ;" and C, ;" :

Tos)=(s+1)T(s)=C)y' $*+Cy' 3+ 0y 62+ Cp' 8+Cyy"=0 (18 ¢)

where

1 2 2 0
Cy'= y Cy'=
2 1 o 2

1f we wish to maintain the consistency of C,; =1, we may interchange the rows
in the T'y(s) and define new matrix coefficients as C, ; and C, ; :

Ty'(8)=Cy84 + Cy 8%+ C1g8° + Cq8 + C13 =0 (18 1)
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5 2 0 1
C:n=%( ) Caz=( ) L (18 ¢)
2 5 1 0

J

No singular matrix appears in the matrix Routh array and all the H;’s can be
obtained. It is observed that only the H, is a symmetric but non-positive
definite matrix.

From the above illustrations we conclude that if any ill-conditioned problem

occurs in the caleulation, then the above methods can be applied to solve the
problem.

5. Conclusion

The transformation matrix established by Chen and Chu (1866) for trans-
forming the companion form to the Schwarz form has been modified and

Lt B et aiet
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extended to transform the companion block form to the block Schwarz form.
The new matrix in the block Schwarz form has been constructed by using the
matrix quotients obtained from the matrix Routh array which is constructed
from the characteristic matrix polynomial. When the matrix quotients in the
matrix Routh array are positive-definite symmetric real matrices, the suffi-
cient condition derived in this paper shows that the multivariable system is
asymptotically stable. Also, a set of necessary conditions has been derived
for the asymptotic stability. Thus, we have partially extended the Routh
criterion (Routh 1877) to the matrix Routh criterion for a class of matrix
polynomials. The direct extension of the necessary and sufficient condition
of the Routh criterion {Routh 1877) to a general matrix polynomials need
further studies.
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TRANSFER FUNCTION FITTING FROM
EXPERIMENTAL FREQUENCY-RESPONSE DATA
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Department of Electrical Engineering, University of Houston, Houston, TX 77004, U.S.A.
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Abstract—A simple method is proposed that will fit the coefficients of a transfer function from the real and
imaginary parts of experimental frequency-response data. An approximate logarithmic amplitude-frequency
plot is used to formulate an irrational transfer function which then estimates the interpolation data and the
degree of the final transfer function. The present method is applicable to either minimum or non-minimum
phase system identification.

1. INTRODUCTION
The problem of finding unknown coefficients of a transfer function as a ratio of two frequency-
dependent polynomials has been investigated by Levy[1], Kardashov and Karniushin[2]. and
Sanathanan and Koerner[3]. In general, they would evaluate the polynomial coefficients by
minimizing the weighted sum of squares of the errors in magnitude at arbitrary experimental
points. Ausman[4] proposed a graphical method to rapidly estimate the coefficients of a transfer
function; however, that procedure is only applicable for a minimum phase system.

In this paper a simple method is presented to approximate the coefficients of a transfer
function for minimum and non-minimum phase systems. The generalized Bode plot is used to
formulate an irraticnal transfer function from which we obtain interpolation frequency-
response data that will allow us to estimate the polynomial coefficients without minimizing the
weighted sum of squares of the errors in magnitude at arbitrary points.

2. THE DERIVATION
Consider the transfer function

m

Pot PiS+Pas’+ 4 Pms

O = Y s+ g™ T " W
where p; and g; are unknown coefficients to be determined. Substituting s = jw, we have
Gljwy) = (Po— P20’ + Pawr’ = Pewi’ + * - ) + j(prox — p3wi’ + Pswi’ — prwy + - - °) @

(1 - Qo + qu’ — qew® +++ ) + j(quan — Gy + s’ — ooy’ +++°)
= R(wi) + jl ()
=Ry +jl

where R, and I, are the real and imaginary parts of the transfer function at the experimental
frequencies wi. After we multiply both sides of eqn (2) by the common denominator, we
separate the real and imaginary parts and then equate the respective real and imaginary parts.
We now have

Po— P20 + pawi’ = psn’ + + - - + g1y + R’ ~ @3l - QR + - - = Ry 3)
and

Piwog — Py’ + pswi’ + + - = q Ruoy + @2l + 3R’ — @l + - - - = I C))
205
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Combining eqns (3) and (4) results in

Pot prwy — Pzw:‘z - I’:(m(3 + p4m‘+ Ps(m‘5 = = @R ~ L )an + @ Ry + l,,)a.»,‘z + (R — l,()a.,‘3
~qdR+ L)'~ =R +L (9

The complete form of eqn (5) is

[ 45 2 3 4 s r 7

lwl_wlz"wljwl w ...~ T s’ Tl - s - T sy0f ... ] f‘ po-‘ Ri+1

3
lon— 0~ 0wy’ . .. = Thn 107" Thws’ = 507" — Towd’ 5502° ... P R+ 1
2 3 s 6 -
lwn— ll-'mz" wmjwm‘wms- .7 meﬂlsmwm, Toom — smwm‘ = Tt Sy - - . Pm | = Ry +1,
9

e, . . .3 ., L . .

L lw,-w,z—wxl wx‘wxs---'waxsx“’xz Lo, — sw, - Twy s -.. y an ] L Rx+lx_4
(6)

where

=R+ 1y k=1,2,...
Tg=Rk-'lk; k=l,2....

xX=m+n+1

By substituting the selected x sets of frequency response data into eqn (6), we can solve for the
required unknown coefficients p; and g

3. ESTIMATION OF THE CORNER FREQ(_JENCY AND THE ORDER
Bode[S) uses piecewise linear segments with integer slopes to approximate the logarithmic
amplitude-frequency characteristic of a function. Ausman{4] applies this characteristic to
evaluate the coefficients of a transfer function. Polonnikov [6, 7) generalizes Bode’s approach to
estimate the phase-frequency characteristic. We shall now obtain a logarithmic amplitude-
frequency characteristic by piecewise linear segments with accurate integer or fractional slopes.
The approximate transfer function is

Hog) (eg) " (1e3)”

BT R )

where a; and b; are corner frequencies, and where m; and n; may be integer or fractional
values. In general, eqn (7) is an irrational transfer function. Compared to an approximation
made by other methods(4, 5], this present analysis is much better because the slopes may be
precise fractional values. However, the worst errors caused by piecewise segment ap-
proximation occur at the corner frequencies a, and b,; therefore, these corner frequencies
provide the most important information of the frequency-response curve. If the interpolation
data in eqn (6) include these important corner frequencies, a good transfer-function fitting is
expected. In this paper these corner frequency-response data are chosen as main interpolation
points for determining the unknown coefficients in eqn (6). The difference of the order of two
polynomials in egn (1) can be estimated from eqn (7). In other words

n—m#in,-zmk. ®

x=]

Based on eqn (8), the numbers of the unknown coefficients and the interpolation points may be
estimated.
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4. ILLUSTRATIVE EXAMPLES

207

Example 1. Consider Levy's non-minimum phase example. The frequency-response data
generated from the transfer function in eqn (9) is shown in Table | and the log-amplitude plot

versus log-frequency is shown in Fig. 1.

p ot b ek 4

-5 i
9 :
T =1301s + 0015 ® ];
The irrational transfer function approximated from the generalized Bode plot is :
:
0.54 0.57 o.1s §
s s s
1+= 1+3 1+~
(1+53) (1+45) ()
T(s)= i (10) '
()
10 i
i
where the corner frequencies are :
@ =wi=0.5, w3=wi=10
»n=ws=2 , we= 0] =40
Table 1.
Given data Identified results
k ' {TGoi Gk R« I {Glw)) Gljwi) | A L
1 0.1 1.0064 —6.45 1.0000 -0.1130 1.0013 -6.26 0.9953 -0.1092
2 0.2 1.0239 ~12.41 1.0000 ~0.2200 1.0160 -12.41 0.9923 -0.2183
3 0.5 1.11%4 ~29.43 0.975 -0.5500 1.1142 -29.34 09713 —0.5459
4 0.7 1.2393 ~3901 0.9630 -0.7800 1.2171 -3891 09472 —0.7644
5 1.0 1.4399 -51.06 0.9050 -1.1200 1.4125 -50.66 0.8955 -1.0924
6 20 221 -75.04 0.5880 -2.2000 2.2631 -75.1§ 0.5798 -2.1875
7 40 4.4375 -102.0 -0.925 -4.3400 4.3954 ~101.50 -0.877 —-4.3071
8 10 8.1751 -1359 -5870 -5.6900 $.0864 ~136.08 -5.826 —5.608
9 10.0 10.05 -174.0 -10.00 -1.1050 99115 ~174.67 -9.869 -0.9206
10 200 5.5541 -2334 -3.310 4.460 5.4612 ~2334 -3.245 43926
11 40.0 2.5451 -253.5 ~0.7240 2.4400 2.5363 ~253.5 -0.714 24338
12 700 1.4479 -261.0 -0.2270 1.4300 1.4205 ~261.0 -0.225 1.4026
13 100 0.9994 -263.5 -0.1130 0.9930 0.9892 ~263.6 -0.109 09832
20(0g.dF (o), 48 j
mnog,olau«.)l d8 . . - . . . .
001 01 05 1o 20 10. “ 100. ‘
%0 i
Siopes st diftarent parts Iof rasponse n:urvo:T T l ;
<850 s | I |
29 20000 — = 1 T —
%
=219 ‘:5 1" ! [ I .
20109 ‘ 2 l ‘ | I X5 X3 '
X3 = "z'l's | =-1.15 The originat function 1
10 - 20109 f t +
SF e == o tisy — V)
’ Xe= o]~ | = The identified function "\ X
m g
el | 21 1 radians
o nfe 1 ‘ = “second
Slope of sach segment:
M= =054 0 =[xy =225 | L :/ |
2 = Xa— Xy = 0.57 m g M
::, = :. - :, =0.15 L,'"’/ o fadians
" “second
L e m o N
The spp f(s)-( 05 i )
(r *m)
The identified function:  G(s) = o280 9614028 _

Fig. 1. Bode plot shows magnitude/frequency response and piecewise segment approximations of F(s)=
(1= $)(1 +0.15 +0.152).
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The order of eqn (1) may be estimated from eqn (10), or

m=054+057+0.15=1
n=225=2
n-m=1,

Four frequency-response data (w), @2, w3, w4) are required in eqn (6) to fit the four unknown
coefficients po, pi, q: and q;. The identified transfer function is

0.99628 — 0.991402s

1+ 0.10053s + 0.0100725 > (1)

G(s)=

The corresponding frequency-response data of eqn (11) and that of eqn (9) are compared in
Table 1. The results are very satisfactory.

Example 2. A set of frequency-response data generated by the following transfer function
is shown in Table 2 and the log-amplitude versus log-frequency plot is shown in Fig. 2.

Table 2.
Given data 1dentified results
Kk w | ITGedt /TGwi) R L |GGl (o) '3 L
1 0.1 1.0002 -028 10002 —0.0048 1.0002 -0.28 1.0002  -0.0048
2 04 1.0029 -1.10 10027  -0.0193 1.0029 ~-1.10 1.0028 -0.0193
3 0.8 Lon? -2.13 10110  -0.0375 1.0124 =2.18 10116 -0.0385
4 20 L1113 -5.68 1.1058  -0.1101 .13 ~5.69 1.1058  -0.1101
5 22 1.1470 ~6.61 L1394 01321 1.1470 -6.62 L34 ~0.1322
6 36 1.4936 -338 1.2418 -0.8299 1.4935 -338 1416 -0.8300
7 54 0.8425 ~-57.8 04485 -0.7132 | 0.8424 ~578 0.4484 07132
8 80 0.6123 -59.1 03147 -0.5253 | 0.6123 -59.1 0.3147 -0.5252
9 16 0.3730 -69.5 0.1309 -0.3493 03730 -69.5 0.139 -0.39
0 2 0.3091 ~729 00908 -0.2955 | 0.3091 729 0.0908  -0.2955
i 100 0.0662 -86.3 0.0042 -0.0661 0.0662 ~86.3 0.0042  —0.0661
2 110 0.0602 -867 00035 -0.0601 0.0602 ~86.7 0.0035  -0.0601
20 log .ol Fijw)l, 4B
20 l0g10lGliw). 0B
54 00 0.1 1.0 22 36 54 _10. 16 100.
1 L . ] L . o
<t T AR
g — — — 4+ =~ — —— — " = \ l | radiang
r T “ second
Slopes at gifterent parts of response curve -l- Slope of each segment:
21 L - I m=x =009 0= ley - aai = 242
”'“lﬁ ! ! I, ya_, MTH-M=063  mizixe-xd=028
Il - 108 =072 L T kw102 meimeox-008
2010933 toq
-85 a2y = — —i—1=
-0 20lop E—: T Vi ml,
.c85-(-2y m/ ! radisns
Xe 16 0.68 - 1 o
2109 ’ﬁ ” N o
-R8-(-88
Bl BT A A )
e 2= —21:. 9. ., The approximate function:  7(g) = t—o—‘)rw(——z—!)-r-('—j-éyu
20109 ‘@ 100
-2 100
The identitied tunction.  G(s) = 5 ong‘“” ;‘{w"‘ °f?“‘

A — e e e e e - o e e e, ————— -
-25 1\ xs

Fig. 2. Bode plot shows magnitude/frequency y response and piecewise segment approximations of Fis)=
(6.63785* + 22.99995 + 111.7974)/(s’ +9uz7s’+mm+mzm4)
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6.6378918s% + 22.999878s + 111.27974

T() = 37988774157+ 28.370563 + 111.29974° 1)
The irrational transfer function approximated from the generalized Bode plot is
s 0.09( i)(l.‘)( L)lm
.(”ﬁ) 1+33) \I*s54
T(s)= s \ 2% s [ %. 3 s (18 13)
(1430 (1+%) (+1%9)
The corner frequencies are
o=@ 8, w3 = wé= 3.6 ws=wjo=16
w=ei=22, wi=wi=54, ws=wi= 100. (14)

The order of Eqn (1) is estimated as follows:

m=0.09+063+1.02=2
n=242+028+0.04=3
n-m=1.

At least six unknown coefficients are required to be identified. By substituting the corner
frequencies into eqn (6), we have the identified transfer function

1.000029 + 0.206648s + 0.05966s> (15)
1+0.2549245 +0.088779s* + 0.008985s°"

G(s)=

The comparison of the frequency-response data of eqns (12) and (15) is shown in Table 2. These
results are also satisfactory.

5. CONCLUSION

A simple method has been presented for fitting a transfer function from experimental
frequency-response data. A logarithmic amplitude-frequency curve is first plotted from the
available frequency-response data, then it is smoothed and approximated by piecewise seg-
ments with integer or fractional slopes. As a result, the most important interpolation data and
the order of the transfer function may be obtained from the irrational transfer function. When
the slope at two consecutive low frequencies, w; and w,, is

x(slope)=u—-l-——lMT o ile ~ T Goale

W
2ios ]

(In other words there exists x poles at the origin.), then the available frequency-response data

should be multiplied by (jw)* so that egn (6) may be applied. The method presented in this

paper is useful for digital computation and provides an additional tool for system identification.
A computer program, based on the approach discussed, has been written in the appendix.
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APPENDIX

This program is used to fit a transfer function using frequency-response data. The details to prepare the input cards can
be summarized as follows:
The first data card:
NDT—number of available frequency-response data
NP—number of different transfer function structures to be identified.

The second data card:
XW,, j = 110 NDT—a vector of the frequency values at which there is available data

The third data card:
XR;,j = 1 to NDT—a vector of the values of the real parts of the available data at XW/,.

The fourth data card:
X1, j = 1to NDT—a vector of the values of the imaginary parts of the available data at XW,.

The fifth data card:
m—The number of the unknown constants in the pumerator polynomial of the transfer function to be identified.
n—The number of the unknown constants in the denominator polynomial of the transfer function to be identified.

The sixth data card:

ND;, j = 1 to NM—A subscript number is assigned to each set of frequency-response data. ND; is the vector of those
subscript numbers which point to the frequency-response data set to be used to identify the
transfer function. NM =n +m.

The numerical example in Example 1 is used to illustrate the procedure. For the given system, 13 (i.e. NDT = 13)
frequency-response data are available in Table 1. Various combinations of the structures of the numerator and
denominator polynomials may result in various kinds of transfer functions. If we are interested in only one (i.e. NP = 1)
structure of the transfer function, then

=_Dotpis
T(J)—Tm- (16)

The data on the first data card are NDT = 13 and NP = 1. The values of the frequencies, real parts, and imaginary parts
of the available data are given in Table 1. Therefore, the data on the subsequent input cards are

XW,=0.1, XW.=02,..., XW;3=100
XR, = 1.0000, XR»=1.0000, ..., XRy;=-0.1130
XI. = —0”30, XI: = —0.2200. cven XI., = 09930

The data on the next card is the number of the unknowns in the numerator and denominator polynomials in eqn (16):
m=2 and n=2

The corner frequencies (the most important data) occur at XW; =0.5, XW, = 2, XW; = 10, and XW,, = 40; therefore,
the values of the selected subscript numbers (i.c., ND)) are ND; = 3, ND:=6, ND; =9, and ND, = 11. These data appear
on the last data card.

The output of this program is po=0.99628, p, = —0.991402, q, =0.10053 and g,=10.010072. Also, the real parts,
imaginary parts, magnitudes, and phase angles at available frequencies of the identified transfer function in eqn (16) are
calculated and printed for comparison with the given data.

A listing of the computer program is as follows:

g A PROGRAM TO FIT TRANSFER FUNCTION USING FREQUENCY-~RESPONSE DATA.

DOUBLE PRECISINN = (50),XR(50),X1(S0),XRT1(S50),.XRI2(%0),B(30),
1A(30,30),G(3G,30),DFTN,H(30), XS, X ,XW(50)
DI¥FNSION KD(30)
CO+PLEX CX,CXX,CXXX,C(SN) ,CXY
1000 READ (S,%01) ~0T, N0
501 FURMAT(1615)
WRITE (6,601) NOT, NP
601 FNRMAT((2X,1615))
READ(H,S02) (Xwi{J) ,Jx]1 ,NDT)
S02 FURVAT(AF?20,8)
RFAD(YH,502) (XxK(),J21,+DT)
REAN(S5,502) (XI(J),J21,MDT)
DO 10 J=1,NDT
10 WRITE (6,602) J,XW(J),XR(J), XTI
h02 FORMAT (5X,1%,5F20,8)
D 90 AMS NP
READ (S,501) m,N
wRITE (b,nul) M,N




L

80

30
21

40
20

003

60
(3]

7¢

90
604

81
60%
606
90

500
501
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HMZN$M
READ (5,501) (ND(J),J%1,NN)
WRITE (6,601) (ND(J),J=1,NNH)
DO HO J=1,NM
JJzENL(J)
w(d)sXw(JJ)
WRITE (6,602) JJ,XW(JJ),XR(JII),XI(JJ)
XRT1(JIZTAR(JIII~XT(IJ)
XRI2¢JIBXR(VJI) ¢X1(JJ)
) 20 K=l ,N»
B(K)=XRT2(K)
A(K,1)=1,
IF (M,EQ,1) GO TO 2%
LK=1
AS=1,
DO 30 J=22,4
ACK,J)ZXSta(K)$8(JU=])
LK=LK+)
IF(LK.EQ,2) XS=(=),)*XS
IF(LK,EQ,2) LK=O
CONTINUE
K=t
XSs=1,
JMzMe]
DU 40 Jz=JM,NN

1F (LK,EG,1) XsXRINF(K)

1IF (LK.FO,2) XIXRI2(K)

[F (LK,EQ,2) XS=(=1,)¢XS
ACK,JISXSEXIN(KIS(J=JMel)
LXsLk+1

IF(LK,GT,.2) LK=t

CUNTINUE

CALL TNVER (A,NM,G,0,DETN,B,H)
WRTTE (6,003) M,N,(H(J),J=1,HNM)
FURMAT (//72X,215/7(2X,5E20.817/7)
00 %0 K=} ,NDT

XXS2H (1)

CXZCMPLX(XXS5,04.)

XXzXW(K)

IF(M,EG.1) GU TO 61

no 60 Jz2,m

Jizde)

CXYZCMPLA(U, 4 XK)

CXX2H(J)I*CXY?* 81
CX=2CX+CXX
CXXXECMPLX(14,0.)
DO 70 J=JM, NpM
CXYRCHPLX(0O,,XAX)
JUMzJ=JgMe1

CCXXEH(J)XCXY*2IJM « - .. R A R
CXXXZCXXXeCXX

C(K)=CX/CXXX

WRITE (6,604) K, Xw(K)},C(K)

FORMAT (2X,1%,F20,.8,10X,¥F20,8,5%X,F20,8)
DO 81 J=1,NDT

XCT2XR(J)

YCT=XI1(V)

CAXYSCMPLX(XCT,YCT)

XM1=CARS(CXY)

XTI1=ATANZ2(YCT,XCT) #57,2958

CxsC(VJ)

XM22CARS(CX)

XXCT=REAL(CX)

YYCTSAIMAG(CX)

XT22ATAN2(YYCT ,XXCT) #57,2958

WRITE (6,605) J,Xw(J)},XR(J),X1(J) ,XM1,XT1
WRITE (6,606) J,Xw(J),C(J) ,XMQ,XT2

FORMAT(/2X,15,F20,8,2%,F20,8,2X,F20,8,2X,E20,08,2X,F20,8)
FORMAT(2Xx,15,F20,8,2X,F20,8,2X,F20,98,2X,£20,8,2X,F20,8/)

CONTINUF

GO T 1000

EnD :
SUBROUTINE TINVER (A,N,8,M,0ET,XC,XD)

DOUBLE PRECTSION A(30,30),B(30,30),1PVOT(30),INDEX(30,2),
1PIVOT(30),XC(30),%XD(30),DET,T ,S

FQUIVALKNCE (IROW,JROW), (ICNL,JCOL)
FORMAT (12)
FORMAT (4F20.6)

b1l

™

ﬁ
A
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601 FOURMAT (///(2X,8F15%,6))
LE 1]
57 DET=1,
no 1T Jd=1,n
17 1IPVUT(J)=0
2 PO 13S 1=1,N
' =0,
N0 9 J=1,N
IFCIPVUT(J)~1) 13,9,13
PO 23 K=t,w
IFC(IPVOT(K)~1) 43,23,81
43 IV (DABS(T)=DABS(A(J,K))) 83,23,23
83 1ROW=J
1COL=K
T3A(J,K)
CONTINUE
CONTINIE
IPVOT(ICOL)=TPVOT(ICOL) #1
1F(IROW=TCNL) 73,109,7)
73 DET=z=DET
00 12 L=1,N
T=A(TROw, L)
ACIROW,[,)=A(ICOL,L)
12 A(ICOL,L)=T
IF(M) 109,109,33
313 DO 2 L= ,M
T=B(IR0Ow,L)
X B(IRDW,LISR(ICOL,L)
3 2 ROICOL,L)Y=T
109 IMDFX(I,1)=[ROW
INDEX(T,2)=1COL
PIVAT(1)sACICUL, ICOL)
DFETSOFT*PIVOT(1)
ACICOL, ICOL)=1,
Do 205 L=1,N
205 ACICOL,L)SACICOL,L)/PIVOT(I)
IF(M) 347,347,066
66 DO 52 L=1,M
52 B(ICOL,LY=B(ICOL,L)/PIVOT(])
347 DO 134 LI=t,N
1# (LI=ICOL) 21,134,21
21 T=ALLY,ICOL)Y
A(LI,ICOL)=0.
DO B9 L=1,N
89 A(LI,LY=A(LI,L)=A(ICOL,L)ST
IF{») 134,134,18
18 DO 6H L=1,m
68 BILI,LY=B(LI,L)=R(ICLL,L)*T
134 CONTINUF
135 CONTINUE
222 DO 3 1=1,N .
Lav=Tet | . Ce e L e e s - . . .
. e - e S, S T AF(TMDEX(L,))=INDEX(L,2)) 19,3,19
19 JROW=INDEX(L,Y)
JCOLEINDEX(L,2)
DO 549 K=1,w
TaA(K,JR0W)
ACK,JRU~N)=A(K,JCOI.)
A(K,JCO1)=T
$49 CONTIMUE
3 CONTINDE
DO 40 K=1,N
40 CONTINUFE
DU 20 K=1,N
$=0,
DO 30 J=1,M
30 SES+A(K,J)*XC(I)
20 AD(X)=S
#RITE (6,601) (XD(K),K=El,N)
L} CUNTINUE
RETIIRN
END f

-
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Solution of state-space equations via block-pulse functions

L. S. SHIEHY, C. K. YEUNGt and B. C. McINNISY

A recursive algorithm is developed for the piecewise-constant solution of dynamic
equations via block-pulse functions ¢;(¢), where j=1,2,...,m. For 1< j<m (where
Jj and m are integers) and final time 7', each block-pulse function ¢;(¢) is defined
by ¢;(t)=1 for (j—1)Tim<t< jTim and $j{t) =0 otherwise. Compared with Walsh
function approaches, the proposed method is simpler to compute, is more suitable
for computer programming, and provides the same accuracy. Also, a discrete-time
solution is derived for a zero-input state equation.

1. Introduction
Consider a linear time-invariant system described by the state equation
Z(t) = Ax(t) + Bu(t) (1a)
and an initial vector
x(0) =x, (19)

where A is an n x # system matrix, B is an n x r constant matrix, x(t) is a state
vector of n components, &(!) is a rate vector, and u(¢) is an r-component input
[

vector. It is often difficult to evaluate the integration  #(t)dt, which
0

is the solution z(f) in (1), by a numerical method (Carnahan ef al. 1969). One
approach is to find a set of orthogonal functions i,(t) for the approximate
solution as follows :

t t
2(t) =2(0) + g () dt;Poj Y(t) dt = PQY(t) = Wi(t) (2)

where P, Q@ and W are n x m, m x m and n x m weighting matrices, respectively,
and y(t) is an m x 1 vector with m orthogonal functions i;(¢), which are both
suitable for approximation of #(f) and easy to integrate numerically.
Corrington (1973), Chen and Hsiao (1975), and Rao and Sivakumar (1975)
chose Walsh functions as the y,(t) for the approximate solution in (2)
and reported that their piecewise-constant solution gives a satisfactory
result. However, their computational methods (Chen and Hsiao 1975, Rao
and Sivakumar 1975) either required the inversion of a large matrix or the
inversion of many small matrices. This results in computing time and storage
being wasted, and the truncation and round-off errors might be seriously
accumulated. Recently, Chen et al. (1976) and Gopalsami and Deekshatulu
(1976) introduced a set of ‘ block-pulse functions ’ for the solutions of distri-
buted systems and identification problems. They pointed out that there is
a one-to-one relationship between Walsh functions and block-pulse functions.
For 1< j<m, where j and m are integers, the block-pulse function ¢,(f) is

Received 8 April 1977.
+ Department of Electrical Engineering, University of Houston, Houston, Texas
77004, U.S.A.
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re-defined and extended in the interval 0<¢< T (rather than in the interval
0<t<1 as in Chen et al. (1976), and Gopalsami and Deekshatulu (1976)) and

by

(3a)

1 for (j—1)T/m<t<jTim
$,(t)=
0 otherwise

T is the final time, and m is the number of subintervals between =0 and
t=T as well as the number of block-pulse functions to be used. When m
block-pulse functions are used to approximate the integration of the original
block-pulse functions, we have

P11 [ 400
¢ T T
fona=_Hpw=_10 3 1 - 1)l 40 (35)

0 0 0 - 1| ¢,

where $(t) is an mx 1 vector with m block-pulse functions. The constant
matrix (T/m)H, with the dimensions m x m, is the operational matrix (Chen
et al. 1976, Gopalsami and Deekshatulu 1976) for the block-pulse functions.
Sannuti (1976) discussed the properties of the ¢;(f) and proposed a method
for the solutions of linear and non-linear problems. From (3 b) we observe
that the matrix H is an upper triangular matrix that consists of diagonal
elements being } and the other elements being 1. By taking advantage of
this peculiar arrangement of H and by choosing the block-pulse functions
$;(t) as the §(t) in (2), an alternative method is proposed in this paper
to derive an effective algorithm for the piecewise-constant solution of
the state equation in (1). The computation in our algorithm involves the
inversion of only one matrix that has the same size as the system matrix.
Compared with Walsh function approaches (Corrington 1973, Chen and Hsiao
1975, Rao and Sivakumar 1975) the proposed method is simpler to compute,
is more suitable for computer programming, and provides the same accuracy.

2. Main result

Let 2,(t) be the ith component of the state vector x(¢) that is the solution
of the state equation in (1). The x,(f) can be expressed approximately as

m
Y C; ;4;(t), where m is a large finite number, ¢;(t) are block-pulse functions,
=1

and C, ; are weighting constants to be determined. The state vector z(¢) can
also be approximated as

z(t) = C4(t) (4 a)
where
C=[C,, Cy, ..., Cp] (4 b)
and
¢(t) = [¢l(t)’ ¢2(t)’ seey ¢m(t)]’ (4 C)

The prime designates the transpose, and the % xm matrix C consists of m
column vectors C; to be determined. Our goal is to develop an effective
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algorithm to determine C; for every j so that the piecewise-constant solution
in (4 a) can be obtained.

We will now derive the recursive algorithm. Let the rate vector #(t) in
(1) be approximated as

#(t) = Dé(t) (5a)
by using m block-pulse functions, where
D=[d1’ dzr ---’dm] (5b)

The D is an » x m constant matrix with m column vectors d; of size nx 1 to
be determined. Integrating (5a) and using the results of (3b) and (4a)
yields

x(t)=D 3 $(t) dt +x(0) = [g DH + G] $(t)=C(t) (6 @)
0
where G =[%(0), 2(0), ..., (0)]=[g1, Fz» --.» gim] (6 b)
and T
C=5DH+G=[CI, Cz» ---’Cm] (6¢c)

The g, in (6b) is the initial vector x(0), and the constant matrix (7/m)H is
shown in (3b). The accuracy of an approximate solution in (6 @) depends
on the number of block-pulse functions and the time interval 7'/m used. The
rx 1 input vector u(¢) in (1) can also be approximated as

u(t) 2 L(t) (7a)

using m block-pulse functions, where
L=[L L, ..., L,] (76)
The r x m matrix L consists of m column vectors L; to be determined. By

applying the orthogonal property of the block-pulse functions to (7 a), we

have
iTim

m . .

L, 57( i‘.) u(t) dt=4{u(GT/m) +u((j — 1)T/m)] (7¢)
i-

. equals average value of u(t) over the interval (j—1)T/m<t<jT/m. The

accuracy of the approximation in (7c) depends on the time interval Tim

used. Substituting (5 a), (6 a) and (7 @) into (1 a) yields

D=§ADH+AG+BL=§ADH+K (8a)

where K=AG+BL=[ky, ky, ..., k,,] (8 b)

The column vector k; is an % x 1 known vector. The unknown matrix D in
(8 a) and (5 @) can be determined from the matrix equation (Chen and Hsiao
1975)

& 47 [k
T, T[m ,
[I,.m—Ae%H] d 7[51,.,,.—44@11] 4= | ®o

dn dm K
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or
4, U L L A [k ]
~d4 4, 0O ... 0 d, m k,
=7 (84d)
-4 -4 4, ... o0 dy ks
| -4 -4 -4 .. Au_d,,,_‘ L k. |
where
m
‘4I=T1n_%‘4 (Se)

The 1, in (8¢) is an nm x nm identity matrix, and the ® in (8 ¢) represents
the Kronecker product. Each n xn block element 0 in (8 d) is a null matrix
and [, in (8 ¢) i3 an n x » identity matrix. It is known that, as more orthogonal
functions are used to approximate (), a better approximate solution is
obtained. Therefore, m should be a large number and the matrix

[("I/T)Inm - ‘4 ®Hl]

is large. The direct inversion of such a matrix for the solution of d; in (8 ¢)
is not an effective method as far as the computing time and storage are
concerned. However, from the peculiar formulation of the square matrix
in (8 d), we can derive an effective algorithm for solving d; instead of invert-
ing the matrix directly. This effective algorithm is derived in the following
way. By pre-multiplying each block element on both sides of (8d) by 4,~!
and by rearranging the new matrix equation, we have an alternative form of
(84d) as

[ d, 7 R, 0 o ... o]l d; ] [ Rk,
d, R, R, 0 .. 0 d, m| ks
= +7 (9a)
d, . R, R, 0 d, Rk, ]
) | d.m: :]{2 R‘l Ra 2] Ldm—]_‘ L lem .
where
m -1
R1=A1-*=(-T-1,,—;A>
Ry=A; ' A=R,d 9b)
m
d, =7 Rk,

iquation (9 @) can be solved readily for d;. After obtaining the matrices R,
and R, and the vector d; in (9b), we can immediately determine the vector
d, from the first equation in (3 ). Then we can substitute d; into the second
equation and solve for d;, ete. Note that the m can be chosen so that
{((m/T)I,— (3)A)! exists.
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The general algorithm is

m
d1=-i Rk,
i=1 m m (10 @)
dj = Rz .;l di +7 lej =dj—l + RZdj—l +T Rl(kj-kj—l)
for j=2,3,...,m
where
m -1
R, = (T I,— %A) =4,7!
(10 b)

Ry=A,' A=R,A

Consequently from (6 ¢) and (10) we have the required column vectors C;, or

T
01=% d,+¢,

(11)
TiZ) T T
C,:;t i; di+% d,-+g,.=C’,-_,+2—7-n (d;_,+d;) forj=2,8,..,m

Substituting (11) into (4) yields the required piecewise-constant solution of
the state equation in (1). Note that the ¢,(t) differs from zero only in the
interval (j—1)T/m<t<jT/m; therefore, the jth column vector C; is the
required piecewise-constant solution in that interval. Another advantage of
the proposed method is that C; involves only the vectors d;, k; and g,, for
t=1... j, whereas the Walsh-function approaches (Corrington 1973, Chen
and Hsiao 1975, Rao and Sivakumar 1975) require a whole matrix W and a

whole vector (t) in (2).
If «(t)=0 in (1), (10) and (11) can be expressed by a set of difference

equations
d(1) =7 B(0) (12a)
d(ij+1)=(,+ R)d(j) forj=1,2,...,m—1 (12 %)
and
e(1) =321, + R,)x(0) (13 a)

c(j+l)=c(j)+2—T”; (21, + R,)d(j) for j=1,2,...,,m—1 (13 %)

The solution of (12) is

() = (I + Ra)=1d(1) =75 (L + Ry)' = Ryz(0) (14)

I Substituting (14) into (13 b) yields
o(1) =§(21,, + Ry)(0) (15 a)
] o(j + 1) =c(j) + 42, + Rp)(I, + Ry Ry(0) (15 b)
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The solution of (15) is

j -1
e(j ) =c()+32I,+R,) ";0 (In+ R,)'Ryx(0)

i-1

~42I,+ Ry [1,.+ > (1,.+R2>fRz]x(0) for j=1,2, .. (16)
i=0

Since the trapezoidal rule (as shown in (7)) is used as a base for the numerical
integration, or
r*j+ 1) +2*())

c(j+1)= 3 (17 a}
where z*(j) is the discrete-time solution, therefore
r¥(j+1)=—2*(j) +2c(j +1) (17 )

Substituting (16) into (17 ) we have the required discrete-time equations
2*(0) =x(0)

z*(1) = (I, + R,)x(0) (18 a)
j—1
* +1)= —a*(j)+ (21, + R,) [1n+ ’Zo (]n+R2)iR2] x(0)

The solution of (18 ) is
2*(j)=(, + RyYx(0) for j=0,1,2, ... (18 b)

-1
where R, = %I" - %A) A, T =the final time, and the sampling period =;nT—.
Equation (18 b) can be further analysed as

x*(j)=[1, + R,Jx(0) = ®*(j)x(0) for j=0,1,2, ... (19 @)
where

®*(j)=the transition matrix of a discrete-time system
=[In+ Ry}
=, +(,—34AAT)1AATY for j=0,1,2, ..., and AT=;€
={(I,—}4AT) (I, +}AAT)Y

1 1 .
=L+ AAT + J(AAT + 3 (AAT)P 4+ o (AAT) 4 .Y

=[I,,+AAT+§(AAT)2+ ¥ %(AAT)‘]j (19 b)
i=3

The exact solution of (1) (with u{t)=0) is

x(t) =exp (At)z(0) = D(t)2(0) (20 a)
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where
®(t) =exp (At) =the transition matrix of a continuous-time system
=[exp (AAT)Y for j=0,1,2,3, .., and t=;AT

=[I,,+AAT+§I-‘ (AAT)2+% (AAT)3+41' (AAT)4+...]'

o i
=[I,,+AAT+§(AAT)2+ Yy ;F(AAT)"] (20 b)
i=s ¢!
Comparing ®*(j) with ®(¢) we observe that the first three terms of (19 b)
are equal to those of (20b), while other terms differ in weighting factors
1/2i-1 in (19b) and 1/i'=1/i(i—1)(z—2) ... 1 in (205). Therefore ®*(j) is a
good approximation of @(f) if AT is small. Also, we observe that ®*(j) is
a finite matrix, while ®(¢) is an infinite series of matrices, therefore it is more
convenient to evaluate ®*(j) than ®(¢).
It is believed that the derivation of the approximation of ®(¢) in (20 b) by
O*(j) in (19 b) is new. When u(t)# 0, the approximate discrete-time solution
x*(¢) of x(t) in (1) can be obtained from (11) and (17 b).

3. An illustrative example
Consider the dynamic equation

Z(t) = Az(t) + Bu(t)
1)
z(0) ==z,
where
1 2 2 0 1
A= , B= , %(0)=
3 -4 11 1
and
u(¢) = unit-step functions
1 14y dt
1 mp———
—— ot 1 — 1 it
174 1 0 :
2 fé; dt I
lf 174F P roy 4t I
— it gy de o L v ol
O, 12 1 R 1 2 .1 7 2
4% 7 S sesdr | Tio 0 3 1|l
N .t , /._.-: Toy Ot o 0 o % o
0 172 3/h | 0 1/2 1
bu foy dt
L mt
T’ . t —_ /t
0 o+ 0 6 1

Figure 1. The block-pulse functions and their integrations.
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The piecewise-constant solution of the state equation is
x(t) =Ce(t) (22)

The block-pulse functions ¢,(?) and the integration of the ¢;(¢) are shown in
Fig. 1. The € is an unknown matrix to be determined. The steps to deter-
mine C can be listed as follows :

Step 1

Choose T=1s and m=4. This means that four block-pulse functions
$;0), j=1,..., 4, are used in the interval 0<t< 1, and the sampling period =
Tim=0-25s.

Step 2
Construct @ in (6 b) and L in (7).

1 1 11
G = [2(0), 2(0), %(0), ©(0)]=(91, 92, 93, Gu) = [ : ]

1 111
L=[L,, L,, Ly, L,}=
1 111

and

Step 3
Calculate K in (8 b).

5 5 5§ &
K=AG+BL=[ky, ky kg, kyl=

Step 4 1111

Determine D in (10).
D={d,, d, d3, d,]

m —1 [0-3077 0-0510
Rl = (? 12 - %A) =
0-0769 0-1795

0-4616 0-4102]

where

Rg = RIA =
0-615¢ —0-5641

6-3592
&y =7 Riky =
2-2560

m "10-2200'
dy=d, + Byd, +f R(ky—ky) =
| 4-8966

m 16-9468 ]
dy=dy+ Rydy + 7 Ry —ky) =
| 8.4233

™ [28-22407
dy=dy+ Rods+ U4 Ry(ky—ky)=

[ 14-0999 |
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Slé‘p 5
Evaluate the required € in (11).

C=(C,, C,, C,, C4]

1-7949
T
Cl=2_m d1+91=[ ]

1-2820

T 3.8773
Co=C+ 2= (dy+d))=
2m 2.1792

T 7-3038
Ca =Cz +-2Tn. (d3+d2) =

where

3-8547

T 13-:0125
04=Cs+‘27n (dy+ds)=

6-6936
The required piecewise-constant solution in (21) is
iy (1) = 1-7949¢, (1) + 3-8773¢,(£) + T-30384,(t) + 13-01256,(¢)
xq(t) 22 1-2820¢h, () + 2:1792,(t) + 3-8547dh4(t) + 6-69364,(¢)

4

EXACT X, (t)

10+~
/APPROXIMATE X, (¢)
8 /
— .
e ;

_ . :
N r }//‘\ EXACT X, (t) y
s |

I APPROXINATE X, (t)

N\

|
P {
/
2 == i
%,—(f
0 1 1 1 1 1 1 i - 1 i
0 1/8 /4 3/8 172 5/8 /4 7/8 !

Figure 2. The exact solutions and the approximated solutions.
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The exact solution of (21) is
x,(t) =% exp (2t) — s exp (—5¢)— §
y(t) =% exp (2t) + 5 exp (- 5¢) - §

The response curves of the exact solution and the approximated solution are
shown in Fig. 2. The approximate discrete-time solution x*(t) of x(t) in (21)
can be obtained from the C in (22) and (17 b).

If u(t)=0 in (21), the exact solution of (21) is

z(t)=%exp (2t)—} exp (- 5')}

xo(t) =14 exp (2t} + % exp (—5¢)
From (23) and (18) we can evaluate the exact solution x(f) and the approxi-
mated solution z*(!) at samples j=1, 2, 3, 4, and sampling period=T/m =
0-25. The results are tabulated as follows :

(23)

J t EAQ) x,*(t) Zy(t) xa*(t)
0 0 1 1 1 1

1 0-25 1-843 1-872 1-065 1-051
2 0:50 3-:095 3-167 1-589 1-610
3 0-75 5-119 5-289 2:571 2-651
4 1-00 8-444 8:818 4-225 4411

It is interesting to observe that the solution obtained by the four-point
approximation is quite satisfactory.
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Abstract—A method is given for optimally fitting parameter matrices of state equations from the real and
imaginary parts of noise free frequency-response data of a multi-input, multi-output, linear dynamic system.
It is assumed that all state variables are accessible for measurement. The obtained data may contain
measurement errors.

1. INTRODUCTION

Several authors{1-3] have considered the application of frequency response concepts for
identification of dynamic systems. The problems of predicting parametric error from frequency
response measurements have also been investigated[3-5]. A method is presented here to
determine the best estimate, in least mean square sense, of the parameter matrices of the
multi-input, multi-output, linear, time-invariant dynamic system equations if all the state
variables are accessible for measurement. The obtained data are noise free and contain
measurement errors.

2. DERIVATION

The state equations of an asymptotically stable, completely controllable and observable,
linear time-invariant system are given by:

X=AX+BU0 %)
Y=CX (1a)
X0 =10 (1b)

where A is a constant n X n system matrix, X is an n x 1 state vector, B is a constant n X r input
matrix, C is a constant m X n output matrix, U is an rx 1 input vector, and Y is an m x 1
output vector. Let us define,

B={b,,..., b} V)
]l

é=|- (2a)
&r
Uﬂ

v=|- (2b)
U, |

where b; is an n x 1 column vector and ¢ is an n x 1 row vector.
29
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The Laplace transformation of eqns (1) and (1a) yields,

(sf - A)X(s) = BU(s) 3)

and
Y(s)= CX(s). (3a)
Successive choice of each of the scalars U,(s) in egn (2b) as an input while the remaining

scalar components of U(s) are zero yields the following set of transfer functions from each of
the scalar inputs to the state variables.

(sf - AT(s)=6. @
where
. 1
T,(s)—m)?,(s) and e=1,...,r (4a)

If the input functions of U(s) are sinusoidal f‘unctions with varying frequencies w, we
obtain the corresponding frequency response data T.(jw,) as follows:

T.(jo) = Pw) +ideen), e=1,....r )
where P.(w,) and d,(wx) are vectors of the real and the imaginary parts of T, (jay).

Multiplying the steady state portion of eqn (4a) by a normalization constant M, (i.c. the
magnitude of a sinusoidal input functior} we have

X (jw) = M fjw) = MB.(0) + Milw), e=1,....r (5a)
and
X (jwn) = 2| Xe(jor) (5b)

Substituting s = ju, and eqns (5) and (5a) into eqns (4) and (3a) yields

Liwid — ANPo(wr) + jde(wi)) = b, ®)
Y.Gun) = CIMP.(wy) + M) = gelen) + jhelan) (6a)

and
Vo) = 3, V.ljor) (6b)

where #.(aw) and A,(w) are vectors of the real and imaginary parts of Y,(jwy). After we
separate the real and imaginary parts of eqns (6) and (6a) and equate the respective real and
imaginary parts, we have

Adan) = @Po(an) )
AP wn) + ond(w) = b, (72)
gelay) = CMP.(@r) ()
and -
he(wy) = CM.Ge(an). (%)

The parameter matrices A, b, and C can be obtained as follows:
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A= [0 P@y), 02P@)), . ..., 0Pl delar). Gel@), . ..., Gelwn)] @®
5( = ’(Aﬁe("’k) + wkée(“k )] (8a)
and i . i
€ = (@), Bel@). . . . . Elw)IMPe(@), MP (@), ..., MPo(wy)]™'
= [h@), Belw), . - . . o) Mcel@r), Mde(@2), .. ., MGe(wa))™"
r r r n r . -1
-[Satwi..... 3 é,(w.)][gl MA@ 3 M.P.(w.)]
r LA r r -1
=[S A 3 h.(w.)][;_:‘ Mdwd.. . 3 M.é.(w.)] . (8b)

The data in eqns (8)-(8b) can be chosen so that the matrix inversions exist.

3. EVALUATION OF OPTIMAL PARAMETER MATRICS

1f the frequency response data are noise free and measurement error free, then there exist
unique parameter matrices A, B and ¢. However, in practice, there exist measurement errors
even if the system is noise free. As a result, the evaluated parameter matrices have inaccuracies
due to the errors. In this paper, optimal parameter matrices are evaluated from the measure-
ment error contaminated data. .

Consider i sets of parameter matrices A, b, and C, which are defined as A, b, and C;, and
which are evaluated from i sets of data using one control input or r control inputs. If many sets
of experimental frequency response data can be obtained, then the optimal parameter matrices
A, b, and € can be obtained from the matrix-mean values, or

k
A1 XA )
P (P A ‘
be =1 2, ba (%a)
i=]
- 1 & A
C=7".-|Ci~ ~ %)

However, to obtain many sets of frequency response data is often not practical and sometimes
impossible. The following technique is proposed to obtain the ogtimal matrices with fewer sets
of frequency response data. Suppose that the system matrices A;, i =1,..., r can be evaluated
by r sets of frequency response data which are obtained from the controllable system by any
one input U, or by r sets of inputs, then we construct the following matrix equation,

EA=F (10)
where .
Al i
Ay I
E=[- |and F= | - (10a)
A7 i

in which A;"' are n X n inverse matrices of A, obtained by the use of eqn (8) and [, are n x n
identity matrices. The desired optima_l matrix {6, 7] A which minimizes the sum of squares of
residuals $ = RTR, where R = F - EA, is given by

A=ETE'E'E an

By a similar approach the optimal matrices b, and C can be obtained as follows:
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To obtain b, we construct the matrix equation
GH,=F 12
where X
g
Gy!
G.=|- (12a)
4

in which G are n X n inverse matrices of G; and the elements at jth row and kth column in G; and
H, are:

GG k) =ba(j,1) ifj=k

=0 fj=k (12b)
ﬁe(j’ k)= b-!(jv l) if]= k
=0 ifj#k (12¢)

It is interesting to note the fact that Gi(j, k) and H.(j, k) are diagonal which greatly reduces the
practical problem of calculating H..
The optimal matrix H, is

H.=(G."6,)" G F (13)

The optimal vector b, can be obtained from eqn (12c). To obtain the optimal row vector Glin
C we use the following matrix equation:

DS =F (14
where .
D!
B!
D.=|. (14a)
B

in which 7" are n X n inverse matrices of I and the elements of the jth row and kth column
in D, and § are

DGk =CL,p) ifj=k

=0 ifj#k (14b)
SG.k=CT.) ifj=k
=0 if j # k (14c)

j=h....mi=1....nz=1,...,m k=1,...,n Here again the structure of Di(j, k) is quite
favorable for performing the necessary inversions.
The optimal matrix S, can be obtained from

S, =(B.D,)"'DE as)
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The optimal row vector C.T can be obtained from eqn (14c). After obtaining the optimal vectors
b, and C.” we have the optimal input matrix and output matrix, or

B=1lb,....b) (16)
and
T

(o))
1

a7

"

4. CONCLUSION

A method for the solution of the difficult problem of identifying 2 multi-input, multi-output,
linear system from measurement error contaminated data has been presented. The resultant
parameter matrices are optimal in the least mean square sense. The particular advantage of this
technique is the ability to utilize a relatively limited amount of experimental data to obtain the
systems dynamic equations. The identification process can be easily performed using digital
computers.
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APPENDIX
Tltustrative example. For a known dynamic system described by the following state equation,

X = AX +BU
Y=0CX (18)

eI IR

the error contaminated frequency response of Table 1 was obtained.
Assuming a unity magnitude for the excitation function or M, and M,, equal unity and by following eqns (8), (8a) and (8b),
we have

where

i = [1018087614  —0.967404614
'L 1963824775 -3.934809232

i =[—0.993028846 -—l.0|54l6667]
2= 2005288462 -4.00249999

(19

Table 1. Frequency response data

e=1, T,G) e=2, Tjw) e=1, Y (o) | e=2, V()
o | Pdan)  aien) | Phan)  @dan) | gen)  ilen) | gdan)  hoew)

02 | 0658 -0.077 | -0.821 0.104 0.82 -0.10 -091 0.13
0.326 -0.05s | -0.158 0.060 0.65 -0.11 -0.32 0.12

20 0269 -0.346 | -0.288 0.442 0.29 -0.4 -0.20 0.51
0.038 -0.192 0173 0.13§ 0.08 -0.38 0.35 027
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for e =1, we have

i ,[ 1.000275632] 8 _[1.000200233]
“' " {-0.001001583 "  "** {0.0011505081
and when e = 2, we have
b -n.oosnzsse] . —|.oozzooss]
e 0.989774387 | 27| 0.987559404

When :z = [, we have
Ti=(1.011006541, 0.474716861),  CL=[1.007961095, 0.521923674)
and for z =2, we obtain
€7, = [0.0220130807, 1949433722},  CT,=(0.0003199367, 2.023653999]
Applying eqns (11), (13) and (15) we have the optimal parameter matrices

A= -1.008 —0.991]
1.983 -3966
§=[l.000 -|.002]
0.000 0.988
and
C--[t.ooe 0.496]
~ Lo.ooo 1.985)

Compared with egn (18), the answer is quite satisfactory.

(19a)

(19b)

(19¢)

(19d)}

(20)

(202)

(20b)
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An algebraic method to determine the common divisor,
poles and transmission zeros of matrix transfer functions

L. S. SHIEHY, Y. J. WEI{ and J. M. NAVARRO}

A purely algebraic method which uses the matrix Routh algorithm and its reverse
process of the algorithm is presented to decompose a matrix transfer function into a
pair of right co-prime polynomial matrices or left co-prime polynomial matrices.
The poles and transmission zeros of the matrix transfer function arc determined from
a pair of relatively primo polynomial matrices. Also, the common divisor of two
matrix polynomials can be obtained by using the matrix Routh algorithm and the
matrix Routh array.

1. Introduction

The properties and applications of poles and transmission zeros of a multi-
variable system have been extensively studied in recent years by many
researchers (Desoer and Schulman 1974, Kwakernaak and Sivan 1972,
Rosenbrock 1970, Moore and Silverman 1972, Wolovich 1972, 1973, Davison
and Wang 1974, Francis and Wonham 1975, Sinswat et al. 1976, Kouvaritakis
and MacFarlane 1976, Wang and Desoer 1972). Desoer and Schulman (1974)
defined the poles as real or complex numbers for which the responses of a
circuit or system to a series of singular inputs are purely exponential. The
transmission zeros are also defined as real or complex numbers for which the
transmission of some particular signals is completely blocked. The role of
poles in the analysis and synthesis of circuits and systems is well known, and
in recent years the transmission zeros are found to be important in many
aspects of feedback control theory (Desoer and Schulman 1974, Kwakernaak
and Sivan 1972, Rosenbrock 1970, Moore and Silverman 1972, Wolovich
1972, 1973, Davison and Wang 1974, Francis and Wonham 1975, Sinswat et al.
1976, Kouvaritakis and MacFarlane 1976, Wang and Desoer 1972). Therefore,
it is useful and desirable to have an effective method to determine the locations
of these poles and transmission zeros. Several methods are available to locate
the positions of these poles and zeros (Kwakernaak and Sivan 1972, Rosenbrock
1970, Moore and Silverman 1972, Wolovich 1973, Davison and Wang 1974,
Francis and Wonham 1975, Sinswat ef al. 1976, Kouvaritakis and MacFarlane
1976). However, most of the suggested approaches (Rosenbrock 1970,
Moore and Silverman 1972, Wolovich 1973, Davison and Wang 1974, Francis
and Wonham 1975, Sinswat et al. 1976, Kouvaritakis and MacFarlane 1976)
are derived for the systems which are represented by state equations in the
time domain. The major disadvantage of most time-domain approaches is
that the computation may not be very attractive if the dynamic systems are

Received 30 March 1977 ; revision received 11 October 1977.

t Department of Electrical Engineering, University of Houston, Houston, Texas
77004, US.A.

1 Departamento de Ingenieria Electronica, Instituto Universitario Politechnico,
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of high order. When a given multivariable system is described by a matrix
transfer function that might have a high degree common divisor (the common
factor) of the numerator and denominator matrix polynomials, the order
of the corresponding state equations is in general very high. Therefore,
most time-domain approaches may be difficult to apply. In this paper, a
purely algebraic method is derived in the frequency domain for the determina-
tion of the poles and transmission zeros of a matrix transfer function. The
matrix Routh algorithm and the reverse process of the algorithm (Shieh and
Gaudiano 1974, Shieh 1975, Shieh et al. 1975) are used to decompose an ng x n;
rational matrix transfer function 7(s) into D(s)~1N,(s) and N,(8)D.(s)7},
where the polynomial matrices D (s) and N (s) with appropriate size arc left

. co-prime and N,(s) and D,s) right co-prime. When ny,=n,;, the poles (the

transmission zeros) of the T'(s) are determined from the zeros of the determinant
Dy(s) or D,(s) (N(s) or N,(s)). When ny#n,, or the matrix Routh algorithm
is of ill-conditioned case, the determinait of the rectangular polynomial
matrices N (s} and N, (s) cannot be obtained. An =»;xn, matrix transfer
function T't(s), which is the generalized inverse (Desoer and Schulman 1974)
of the modified 7T(s), is established and factored into D *(s)-IN*(s) when
ng2n; or N, *(3)D,*(s)~! when ny<n;. The transmission zeros of the 7'(s) are
determined from the invariant poles of the T'*(s) or from the zeros of the
determinant D *(s) with size n; x n; or D, *(s) having size n, > n,,.

Along the same line, recently, several approaches have been proposed by
various authors (Kung et al. 1976, Anderson and Jury 1976, Emre and
Silverman 1976) to determine the relative primeness of two polynomial
matrices. The generalized resultant matrix (Barnett 1971) and the generalized
Bezoutian and Sylvester matrices are used in their works. When the degree
of the polynomial matrices that might have a high degree common divisor is
high, the dimension of the resultant matrix or the equivalent test matrix is
very high. As a result, the effectiveness of their approaches is less.

2. The matrix Routh algorithm and the matrix Routh array

In a single variable system it is well known that the poles and zeros of a
transfer function can be determined from the respective denominator and
numerator polynomials that are relatively prime. The Routh algorithm
and the Routh array (Fryer 1959) are often used to determine the common
factor of the two polynomials in order to determine the pair of relatively
prime polynomials. In this paper we extend the concept to a maltivariable
system that is described by a matrix transfer function. Let us define that R
and C denote the field of real numbers and complex numbers, respectively,
and R(s] and R(s) the sets of all polynomials and rational functions in the field
of complex variables having real coefficients. We also define that R[s]mexn
and R(s)"oxnt are the sets of all n, x n; matrices with elements in R[s] and
R(s), respectively.

Consider the following matrix transfer function T'(s)eR(s)"oX" which is a
product of a polynomial matrix Ay(s)eR[s]"*™ and the inverse of another
polynomial matrix 4,(s)eR[s]79, where ¢ =min (n,, n;) :

T(8)=Ay(s)Ay(8) P =[Agy+ Age8+ ... + Ag 8]
x[Ap+Ays+...+4; .., (la)
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T(s)=Ay(s)Ay(s) =[Ay+ Aps+...+ 4y 8"]!

x[Agy+ Agps+ ...+ Ay 8™ (1)

where
n+1

Ay(s) = 2! 4,871 and  Ay(s)= Zl A, s

The matrix coefficients in the d,(s) and A4,(s) are expressed by the duuble
subscript notation as 4, eR"o™ and A, ;R7% for the use of the matrix
Routh algorithm. If the 7'(s) is expressed as follows :

1
T(s)=—— D(s 2
©) =375 ©© (@)
then
n+1 n+1l n+1l
Ag8)= Y asi=l, As)= Y algsi-'= Y A, ;71
=1 i=1 ‘=1
and

)= T Pusii= T Ayt

where Ay(s)eR[s] is a polynoraial and I €R? is an identity matrix. By
using the following matrix Routh algorithm and the reverse process of the
algorithm, the 7(s) can be factored into D,(s)~'N(s) and N (s)D,(s)"!, where
D (s), N(s), N.(s) and D,(s} are polynomial matrices of appropriate size. The
matrix Routh algorithm (Shieh and Gaudiano 1974) and its reverse process
(Shieh et al. 1975) of the algorithm for a multivariable system (n;=n,) are
expressed as follows :

Ay, Ay, 4. Al,nAl.n-H.\
Hi=4,4,™ <

Hy=4,4547 <
Ay 24, —H Ay Aypy2Ay3—Hidy Ay ...
Hy=A45, 447 < >(3 a)
‘_’l«uéAzz_HzAaz A2 dyy—HyAdg

A21 : A22 A23 A2,n

A2n.l
2= -1
Hzn - Azn.lA2n+l. 1

A2n+l,1 J

The H; in eqn. (3 a) are the matrix quotients. The block elements of the first
and second rows of eqn. (3 @) are the matrix coefficients of eqn. (1a). The
block elements of the subsequent rows are evaluated by the following matrix
Routh algorithm :

Hi=4,,4;,," for i=1,2,..,2k and k<n
rank A ,=n;=ng (3b)

Ai.i=Ai—2,j+1—Hi> 'ZA‘i—l,j+l fOl' j=l, 2, ver s i=3, 4, o

K
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When the two matrix polynomials 4,(s) and 4,(s) have no common factor, the
matrix Routh array will terminate normally (i.e. we have 2n matrix quotients).
When the two matrix polynomials have a common factor (the common
divisor), the matrix Routh array in eqn. (3 a) will terminate prematurely, and
the last non-vanishing row consists of the matrix coefficients of the common
factor B(s) in the original matrix polynomials 4,(s) and A,(s). If we have
2k matrix quotients H,, we can construct a pair of relatively prime matrix
polynomials, N,(s} and D,(s), by using the reverse process of the matrix Routh
algorithm in eqn. (3 &) :
Popyy,i=1
P,,=H,/P;,, for i=2k,2k-1,..,21 3¢)
Pi—ﬁ.f-f-l=P‘i.j+H‘i—2Pi—l,f+l for i=2k+l, 2k, ...,3; j=l, 2, ..,,k
The 7'(s) in eqn. (1) is
T(s) = A44(8)A,(8)™* =N,(3) B(8)[Dy(8) B(8) ]} = N (s) D, ()
=[Py + Pygs+ ... + Py 1S5 1[Pyy + Prgs+ ... + Py 8% 7! (4)

The procedure can be well illustrated by the following numerical example.

Example 1
Consider that the common divisor B(s) and a pair of relatively prime

matrix polynomials N,(s) and D,(s) of the following matrix transfer function
T'(s) are required :
T(8) = A4,4(8)A,(s)" = N,(3) B(8)[ Dy(3) B(8)]7! = N () Dy(8) (8)

where

Ay(8)= Ay + dy8+ Aygs? + 4,8

(3 2 L)l D) )

Ay(8) = Agy + Aggs + Aggs®

(5 2)+(& )G e

no=n,=2 and n=3

The matrix Routh array is
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The matrix Routh array terminates prematurely because the only one block
element Ag, in the sixth row is a null matrix ; therefore, the common divisor

B(s)in T(s) is

B(s)=A51+A528=<i _'1)+((1) :i)a (6 b)

By using the matrix quotients H, ... H,in eqn. (6 a) and applying the algorithm
in eqn. (3 ¢} we have

2 4 2 2
N,(s)=P2,+P228=(_2 l>+<0 l)s

and (6 ¢c)

3 0 4 0 1 O
Dr(3)=Pu+P128+Pl3sz=(—l 2>+(—1 3>8+(0 l>82

In order to show that the B(s) in eqn. (6 b) is a common divisor of A,(s)
and A,(s) in eqn. (5) we replace 4, ; in eqn. (3 b) by P;; in eqn. (6 c) and apply
the algorithm in eqn. (3 ) toeqn. (6 ¢). Thus we have the following alternative
matrix Routh array that has the same matrix quotients H; as eqn. (6 a) :

!
I
I
I
l
I
l
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The justification for the B(s) in eqn. (6 b), which is the common divisor of
the matrix polynomials in eqn. (5), can be proved by the following induction
method. Since the matrix Routh algorithm is developed from the repeated
process of long division of two polynomial matrices, the reverse process of the
algorithm can be applied to eqns. (6a) and (6d) to obtain the following
identities :

Ag + Aggs = Py (A + Agys) = Py, B(s) = B(s) )

A‘l + A.23=H‘(A51 + A“B) +8A.1
=H‘B(8)
=Py B(s)

Agy+ A8+ Ags? =Hy(A ;1 + A 138) + 8(Agy + Agy8)
=Hy Py, B(s) + 8Py, B(s)
=(Pyy + Pyys) B(3) - (6e)

Agy + Agys + Apys® = Hy(Agy + Aggs + Aygs®) +8(A g + A g28)
=Hy( Py, + P,,8)B(s) + 8Py B(s)
=(Py + Pyy8)B(s)

Ay + A8+ Aya8®+ A P =H (Ayy + Aggs + Apy8?) +8(A gy + Agp8 + Agys?)
=H (P, + Py,8)B(s) + 8(Py; + Pyy8) B(8)
=(Pyy + P1e8+ P148%) B(s) J

From the last two equations in egn. (6 ¢) we observe that
Aq(s)=N, r(s)B(a)}
4,(3)=D,(s)B(s)

Therefore B(s) is the common divisor of the two polynomial matrices A4,(s)
and 4,(s).

When #n; #n4 and rank 4, #q in eqn. (3 b), the matrix Routh algorithm in
eqn. (3 b) cannot be directly applied. The matrix Routh algorithm and its
reverse process of the algorithm in eqn. (3) are modified and discussed by the
following case studies.

n T(s)= Ay (8)4,(s)? (N
where

(61)

n+1l

A,(8)= 21 Ay 871 and  4,(8)= Zl 4,7

Case 1
ng >N, T(s)e R(B)noxn., A 2(8)6 R[G]”"x"‘, A,(s)e R[,g]mxm

T'(8) = Ag(s)Ay(8)~ = N,(s) B(s)[ D,(s) B(s)]* = N () D,(s)* (8 a)

Where &

N (s)eR[s]**™, N (s)= Y P, s'; D,s)cR[s]™*™
{=1

k+1 n-k+1

Ds)= Y Py Pyya=1,,; Bs)eR[s]"*™, Bls)= ¥ Bsi-?
=1 i

=1
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The B(s) is the common right divisor of the 4,(s) and 4,(s). For the use of the
matrix Routh algorithm, the matrix coefficients in the N, (s) and D,s) are
expressed by the double-subscript notation as P,; and P,, which can be
obtained by the algorithms as follows.

The matrix Routh algorithm is

H‘=A¢IIA‘+1'1_I, i=l, 2, ey 2k and ksn

rank 4, ,=n (8 b)
A‘-l= Ai—’.!+l - i-!Ai—l.Iﬂ’ Jj=L2,.., =34, ..

The constant matrices H; with appropriate size are called the matrix quotients.
If ny>n;, the pseudo-inverse of A ;=4 7 '={4;1 T 4ia]1"4,,7 i8
the left inverse of 4,,, ;.

The reverse process of the matrix Routh algorithm is

Pyn=1I,,
Pl.l=HlPl+l,l’ l=2k, 2k—l, sy 2, 1 (8 C)

Pi-’,]+l=Pi,I+H‘i—2Pi—l.j+1' i=2k+l, 2k, veey 3, j'-'—'l, 2, ...,k
Case 2
ng<ny, T(S)ER(s)* ™, Ay(s)eR[s]oX"s, A,(s)eR[s]""o

T'(s) = Ay(8)Ay(s)™" = Dy(s) 1 B(s)[N ()1 B(s) "1 = Dy(s)'N(s)  (9a)
where

k
N (s)eRls]*o"™, N \(8) = ‘=Z‘ Q5,815 Dy(s)eR[s] o™

k+1 n-k+1
Dl(s) = ’El Ql. ia‘—l’ Ql,k+l = Iﬂo ’ B(,g)eR[s]’lox’lo’ B(s) = Z Bisi-l
3= t

For the use of the matrix Routh algorithm, the matrix coefficients in the N (s)
and D(s) are expressed by the double-subscript notation as @, ; and @, ; which
can be obtained by the algorithms as follows.

The matrix Routh algorithm in eqn. (8 b) is applied to determine the matrix
quotients H, :
H(=Ai,l‘4‘+l.l-‘! i=l, 2, cavy 2k and ksn

rank 4; ,=mn,

(9b)
A"’= A""-‘+1-H‘—‘A‘—l,’+‘l' j = l) 2’ vaey i=3! 4) e
The new reverse algorithm is
Q’k+l.1 ’Ino
QI,I=QI+1,)HID t=2k’ 2k""lv seey 21 1 (9 O)

Qi s1=Q s+ @y gy $=2k+1,2k,...,3, j=1,2, .,k

man i ot

eetn S A
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(2) T'(s)=A4,(8) 2 A44(8) (10)
where " n+l
Ay(8)= Y 4,8 and 4y(s)= Y 4,80
i=t i

Case 1
ne < n;, T(s)ER(s)noX™, Ay(s)eR[s]rexm, A, (s)eR[s]*o>™o
T(s) = A,(s) A4(s) =[B(8)D(8))* B(s)N ((8) = D,(8)*N ((s) (11 a)
where b
N (s)eR[s]*e*™, N (s)= .-z"i Qs,871 5 Dy(s)eR[s]roxme

k+1 n-k+1
Dys)= ¥ Qu* ", Qurs1=In,; BE)ER[s]ns, Bs)= ¥ B!
i=1 =

The matrix coefficients in the D,(s) and N (s) are expressed by the double-
subscript notation as @, ; and Q, ; which can be determined by the following
algorithms.

The new matrix Routh algorithm is

M‘=Af+l'1~1 Ai,l’ i=l, 2, ceey 2k and kSn
rank 4, ,=1n, (11 d)
Ai,j = Ai—l,i+l - Ai—l.iHMi—z! ] = l’ 2! seey i= 3» 4,

The constant matrices M; with appropriate size are called the matrix quotients.
If ng<my Ay 17 =AM 4i11,14041,17]17! is the right invesre of the 4,,, ,.
The reverse algorithm in (9 c) is applied to determine the @, ; and @, ;.

Qair1,1 =I,,
QI,I=QI+1,1MD l=2k, 2k—l, weny 2, 1 (llc)
Qi—:,j+1=Q{,]+Q{—l,j+1M{—p i=2k+ l, 2kv seey 39 j=l’ 2: ey k

Case 2
ng 2 n;, T(s)eR(s)* o™, Ay(s)eR[s]™*™, A,(s)eR[s]**me
T(s)=A,(8) ' Ay(s) = [ B(s)N,(8) '] B(s) D,(8) ' = N,(8) D,(s) (12a)

where &
N,(&)ER[&]"'X’", Nr(8)= Z P&{s‘-l H D,(G)ER[O]”‘X”‘
f=1
k+1 n—-k+1
D,(s)= Z P, 81, Py =1y, ; B(s)eR[s]"™, B(s)= Z Byt
i=l i=l

The matrix coefficients in the D, (s) and N,(s) are expressed by the double-
subscript notation as P, , and P, ; which can be obtained by the algorithms
as follows,




e
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The matrix Routh algorithm in eqn. (11 b) is applied to determine the
matrix quotients M, :

Mi=Ai+l,;‘.—l Al'.l’ i=l, 2, veny 2k and kSn
rank 4;,=n; (12 b)

Ai.j=Ai—2,1+1—Ai—l,1+lMi—ﬂ' j=l, 2, ceny i=3, 4, e
The reverse algorithm in eqn. (8 ¢) is applied to determine the P, ; and P, ; :

sz+1.1 =Im

Pa=M\Py,,, 1=2%2%-1,..,21 (12¢)

P yj=Pi;+M, 3P, i=2k+1,2k ..,3, j=1,2, .,k

By using Gilbert’s theorem it has been shown (Shieh and Gaudiano 1975) that
the dynamic state equations, which are constructed by using 2k matrix
quotients H; or M; that are obtained from the matrix Routh algorithms,
are minimal realizations of the T'(s). The minimal dimension of the system
matrix is kg x kg, where ¢ =min (n;, n,;) and kg=rank T'(s)2r,. The rank T(s)
can be determined from the Hankel matrix (Ho and Kalman 1966). By
using the same 2k matrix quotients H,; or M; and performing the reverse
process of the matrix Routh algorithm, the monic polynomial matrices D,(s)
and D(s) are obtained and shown in eqns. (8), (9), (11) and (12). The highest
power of s in the D,(s) and Ds) is k and the matrix coefficients of s* (i.e.
Py ;. and @, ;) are identity matrices having size ¢ xg. Therefore

det D, (s)=det D(s)= hil dsi-14d(s) (18)
=1

The highest power of s in the monic polynomial d(s) is kg, which is the rank of
the 7'(s). As a result, the d(s) in eqn. (13) is the characteristic polynomial of
the T'(s) and the polynomial matrices D,(s) and N,(s) are right co-prime and
the D(s) and N (s) are left co-prime.

From the above discussion we also note that the necessary condition for the
existence of the matrix Routh algorithm is that the ratio (denoted as k) of the
rank 7T'(s) and the minimal dimension of the T'(s), r,/g=Fk, is an integer. If
the ratio r,/q is not an integer or it is an integer but the condition (rank 4, ,=¢)
in the matrix Routh algorithm in eqns. (8)-(12) is violated due to the ill-
conditioned matrix 4,,, then the original T'(s) should be modified. 7'(s) is
modified by adding another transfer-function matrix T'y(s)=1/g(s)K whose
rank is of (kg—r,), where k is the nearest integer and the scalar polynomial
g(s) is not a factor of the Ay(s) in eqn. (2). The K is a constant matrix with
appropriate dimension. The modified system T*(s)e R(s)"o*™ is

1
TY(s)=T(s) o K (14)

where rank [(1/g(s))K]=kq—r, and rank T'(s)=kq. It is noted that the
addition of (1/g(s))K to the 7T'(s) does not affect the locations of the poles of the
T(s).




T TSRS SRS AT T e e e A e ERRs

960 L. 8. Shieh et al.

3. Determination of poles and transmission zeros

By using the matrix Routh algorithm the 7'(s) is factored into D (s)~1N (s)
and N,(s)D,(s)-?, where D(s) and N (s) are left co-prime and N,(s) and D,(s)
are right co-prime. When n; =ny =4, Desoer and Schulman (1974) have shown
that the transmission zeros of the 7'(s) are the zeros of the scalar polynomial

n(s), or n(s) = det N (s) = det N (s) =0 (15)

where N(s), N(s), D\(s) and D,(s) are polynomial matrices ; N(s) and N, (s)
are g xq; Dys)and D,(s) are ¢ xq. The poles of the T'(s) are the zeros of the
following characteristic equation :

A(s)=det Dy(s)=det D,(s)=0 (16)

When ry/g#k (an integer), the matrix Routh algorithm cannot be applied.
The procedure shown in eqn. (14) can be applied to determine a pair of relatively
prime polynomial matrices D (s) and N (s) or N,)(s) and D,(s) as follows :

T(s)=D(s)" N !(s) = N, (s) D, (s)* (17a)
The poles of the T''(s) can be determined from the following equations :
det D}s)=det D,(s) = {g(s)}**—"+P(s) =0 (17 b)

where the g(s) is the polynomial used in eqn. (14). The poles of the T'(s) are
the zeros of P(s)=0.

When 7,/g =k (an integer) and ny# n;, the N (s) and N,(s) obtained from the
matrix Routh algorithm are not square polynomial matrices of size n, x 1, and
n;xn;. Therefore the transmission zeros cannot be directly determined from
eqn. (15). The transmission zeros of the 7T'(s) can be determined from the
invariant zeros of the determinants of all ¢ x ¢ minors of the N (s) or N,(s) in
eqn. (16) where ¢ =min (n,, n,). However, when the »n, is much larger than the
n, and vice versa, there exist many ¢ x ¢ minors which are expressed by poly-
nomial matrices.

It is a cumbersome task to find the determinants of these ¢ x ¢ minors and
to determine the roots of many polynomials. This difficulty can be overcome
by applying Desoer and Schulman’s (1974) theorem. The transmission zeros
of the T'(s) are obtained from the invariant poles of two generalized inverses
of the modified T'(s). In this paper we present a procedure to obtain the
generalized inverses of the modified 7T'(s) so that the transmission zeros of the
T'(s) can be determined. The steps are shown as follows.

Step 1. Modify the T'(s) and formulate the generalized inverses T'*(s),
t=1, 2 of the modified T(s), or

T *(s)=[m(8)T(s))! = A;(s)[m,(8) As(8)]2, M2, (18 a)
=[my(8)T(s)] -2 =[m(8) As(8)] 2 4,(5), me< 7, (18%)

where T',*(s)e R(s)"<ms, A,(s)eR[8]77, Ay(s)cR[s]"*™, m,(s)cR[s]. The monic
polynomials m,(s)eR[s], i =1, 2, should not be the factors of the Ay(s) in eqn. (2)
and of the g(s) in eqn. (14), but are chosen in such a way that the power of the
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s in the polynomial matrices m,(s)4,(s) in eqn. (18) is 1° higher than that of
the A(s). This modification does not affect the transmission zeros of the
T(s) but it makes the matrix Routh algorithm applicable.

Step 2. Modify the T'*(s) when r,/g#k (an integer).

The process of this modification is shown in eqn. (14). The additions of
(1/g(8)K, s=1, 2 to the T;*(s), i =1, 2, do not affect the locations of the poles
of the T,*(s) or the transmission zeros of the 7'(s). After performing some
matrix operations we have the generalized inverses of the modified 7'(s)
denoted as T,*(s), i=1,2:

T +(8) =[gi(8)4,(8) + m;(s) K Ag(8)l[gi(s5)mi(s) As(8)]™Y, me2m; (19a)
=[g,(8)m(s) A o(8)1 gi(s)4,(8) + m(8) A(8)K], mo<m; (19D)

Step 3. Determine two pairs of relatively prime polynomial matrices.

The algorithms in egns. (9) and (12) can be applied to obtain two pairs of
left co-prime polynomial matrices denoted as D, *(s) and N;*(s), i=1,2 or
right co-prime polynomial matrices N,,*(s) and D, *(s), i=1,2:

THe) =Dy *(8) 1N *(8), me=m, (20a)
=N, *8)D*(8)™t, me<my (20 b)
Step 4. Select the required transmission zeros.
The poles of the T';*(s), =1, 2, are
det Dy *(s) = {m(8)}m(s)k,(s) =0, me=n; (21 a)
det D, *(3)={m(8)}n(s)k,(s) =0, mno<n, (21 )

The required transmission zeros of the T'(s) are the invariant poles of the
T.*(s), i=1,2. They are the zeros of polynomial n(s) in eqn. (21), or

n(s) =0 (2l¢)

When the 7'(s) is not a strictly proper rational matrix transfer function, eqn.
(19) can also be used to determine the poles and transmission zeros of the T'(s).

Ezxample 2

Consider that the poles and transmission zeros of the following matrix
transfer function 7'(s) are required to be determined :

T(s)=Ay(s)Ay(8)? (22)
where
8346824118412 82498420
Ay8)= 84+48-5 8 +3s3-T8+15

834652+ 135+ 10 3524+ 58+ 26
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and
84 +583+ 1182413846 34882 +178+10
A4,(s)=

S+2s2—3-2 s+83—52+58+6
ny=3 and n;=2
It is difficult to apply most time-domain approaches to this problem. By

using the proposed algorithms in eqn. (8), the T'(s) can be factored into a pair
of relatively prime polynomial matrices N, (s) and D, (s) :

T(s) = Ay(3)Ay(s) = N (8) B(8)[ D,(8) B(8)] ! = N (8) D, ()} (23)
where
s+4 0 82+3s+2 0
N(s)=] 0 s+5] and D,8)=
8+4 2 0 s +3s+2
Following eqn. (16) we have the required poles of the 7'(s) :
A(s)=det D,(s)=(s+1)%(s+2)*=0 (24 a)
or
8,=8;=—1 and 83=8,=-2 (24 0)

It is interesting to note that the common factor B(s) in eqn. (23) is
82+28+3 8+5
B(s)= (25)
s—1 82-23-2
Since n,>n; and the determination of the transmission zeros of the T'(s) are
required, we construct the generalized inverses 7',*(s) in eqn. (18) from the
modified 7'(s) in eqn. (23), and apply the proposed algorithm in eqn. (9) to
decompose the 7',*(s) into two pairs of left co-prime polynomial matrices
Dy *(s) and N *(s), i=1, 2 in eqn. (20 a) as follows :
Ty*(s) = Ay(3)[my(8)Ax(8) 17} = D(8)[m, ()N ,(8) 17 = Dy *(s) !N y*(8) (26 @)
where m,(s) =s2+s+1 is not a factor of the A(s) in eqn. (24 a) :
83+ 552+ 58+ 4 1:1965s2 + 2:1649s + 0-81525
Dy*(s)=
0 8%+ 5-88073s% + 5-88073s + 4-88073
0-427582 + 1-3202+ 0-981  0-01778 4 0-057 0-573s+1-6718+1-02
Nu*s)=

0-0797s% + 0-14078 — 0-574 8*+3-048+1-72 —0-08s2—0-1435+ 0-574

Ty*(s) = A (8)[mg(s) Ag(8) ] = D,(8)[my(s) N ,(8)) 2 = Dyg*(5) 1N 1s*(s) (26 b)
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where my(s) =s2— 10 is not a factor of the A(s) in eqn. (24 a) :

8%+ 452 — 105 — 40 —3-8546728% + 38-54672
Dyp*(s) =
0 834+ 0:443869452 — 103 — 4-438694
2-2452 +4-458+1-41 —1-38s—1-78 —1-245% - 1-458 4+ 0-59
Nyp*(s)=
1-0282-0-365 —0-04 $2+0:495+0-16 —1:025%2+0-365+0-038

Following eqn. (21 a) yields
det D, *(s) = (s + 5+ 1)2(8 + 4)(s + 4-88073) =m,X(s)n(s)k,(s) =0 (27 a)
det D*(s) = (s2— 10)%(s + 4)(5 + 0-44386943) =m,2(s)n(s)ky(s) =0 (27 b)

The common divisor n(s) of the det Dy, *(s) and det D,*(s) is the common
factor n(s)e R[s] in eqns. (27 a) and (27 b). The transmission zeros of the T'(s)
which are the invariant poles of the 7';*(s) in eqgn. (26) are the zeros of the
polynomial n(s), or

n(s)=s8+4=0 (28)

The transmission zero is s= —4.

The computation involves only arithmetic operations of small-size matrices.
Therefore, it is believed that the proposed method is computationally superior
to most time-domain approaches if the system is given in the frequency domain.

4. Conclusion

A purely algebraic method has been presented for factorizing a rational
matrix transfer function into a pair of relatively prime polynomial matrices
and for determining the poles and transmission zeros of a multivariable system.
Also, the common divisor of two matrix polynomials can be determined from
the matrix Routh algorithm and the matrix Routh array. When a matrix
transfer function that might have a high degree common divisor is given, the
method proposed in this paper is computationally superior to most time-
domain methods because the proposed algorithm only deals with arithmetic
operations of small-size matrices. The matrix Routh algorithm has been
extended for general cases (n; #ny and n;=n,).
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| Introduction

The accurate description of most practical systems, for ex-
ample both a small semiactive terminal homing missile system
(1] and an aircraft system (2], result in high order coupled multi-
variable differential equations. Linear representations of these
systems are by a set of coupled high-order differential equations
or a matrix differential equation. A primary concern in the design
of these multivariable systems is the stability problem. One con-
ventional approach is to formulate the system into a high dimen-
sional state equation, then to determine the stability by either
directly evaluating the roots of the scalar characteristic poly-
nomial, indirectly applying the Routh criterion [3], or applica-
tion of Jury’s inner theory [4] on the characteristic polynomial.
However, the determination of a characteristic polynomial for
a large dimensional system is tedious. Moreover, if a system is
modeled as a matrix differential equation, it is more natural to
determine the stability directly from the matrix polynomial than
indirectly from a scalar polynomial. Some approaches have been
proposed to determine the stability of a multivariable system
directly from the matrix polynomial. Papaconstantinou {5]
suggested a scheme for testing stability of polynomial matrices.
In his work, a recursive algorithm was developed to compare the
normalized largest eigenvalues with unity. H-owever, the method
requires the calculation of the eigenvalues of largest moduli for
indirectly determining the stability of polynomial matrices. Re-
cently, Shieh and Sacheti (6] partially extended the scalar Routh
criterion (3] to the matrix case. In this work, it is shown that, if
a matrix polynomial B(s) = Is» + Bas" ' 4+ ... + Byisgiven, a
matrix Routh array can be constructed by using the following
matrix Routh algorithm:

Cij= By j=123..,1

Contributed by the Dynamic S8ystems and Control Division for publication
in the Jounnat or Dynamic Sysrems, MEASUREJENT, AND CoNTROL. Manu-
script recvived at ASME Headquarters, July 17, 1078,
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Conditions for the Stability of
Multivariable Systems

Some suflicient and some necessary conditions for the stability of a class of multi-
variable sysltems represented by matriz polynomials are derived. A new linear block
transformation s also established for transforming an observable block companion
Jorm to the block Schwarz form.

jd 4+ 1 n even
2

where [ = )
,"2L n odd

Cojo= Bpay jJ=1,2,3,...,1

Cu=1I

Cij=Cisajp — HioCis s 1=1,2 ..., j=3,4,...
Hi = Ci(Cina)??

det (Cipya) # 0 (1)

A sufficient condition for stability of the det [B(s)] is that all
the “matrix quotients" H; be real, symmetric, positive definite
matrices. Note that this sufficient condition deals only with H;
and not C;; (the block elements in the tirst column of the matrix
Routh array). Liapunov theory with the state equation in the
controllable block companion (controllable phase-variable) form
was used to derive their result.

In this paper, we develop two approaches for determining the
stability of a elass of multivariable systems. One approach uses<
the “matrix quotients"" M ; that are developed from an alternate
matrix Routh algorithm and a state equation in the observable
block companion form (7}, The other approach uses the block ele-
ments= in the first column of the matrix Routh array. Two suf-
ficient conditions and three necessary conditions are derived
for the stability of matrix polynomials, thereby partially ex-
tending the scalar Routh criterion to the matrix Routh criterion.

il Sufficient Conditions

The objective of this paper is to establish the criteria for the
stability of the foilowing matrix differential equations.

=12 ..,n

nel
Y BD“z() = (0}, Ban = 1 (2a)

Transactions of the ASME




and

Dz0) = [ain]  1=1,2,3,...,n (2b)

where z(¢) i+ the m-dimensional state vector. B,, 1, and 0} are
m X m real constant matrix, identity matrix and null matrix,
respectively. For the scalar case, it is well known that a system
is asymptotically stable if and only if the Routh array elements
in the first column are all positive. Shieh and Sacheti [6] partially
extended the Routh criteria {3} to the matrix case and derived
a sufficient condition for the stability of a multivariable =ystem
in equation (2; from the controllable block companion form. In
this paper we derive some sufficient and some necessary condi-
tions for the system in equation (2) from the observable block
companion form.

Let us rewrite the system in equation (2) into the following

algroithm and alternate matrix Routh array which are different
from those in equation (1).

Let us define / = n/2 + 1if n is an even number, otherwise
I'= (n 4+ 1)/2, and D, ; a5 follows:

Dy, = Bayisj i=123, ...,1
Dy = Brasy, 3=1,23,...,1
Dy =1 (5a)

The alternate matrix Routh array and the matrix Routh algo-
rithin are:

(5)

observable block companion form: Dy = By Dy = B, Dy = B,...
[£] = [Biz] (3a) M; = Dy"\Dy, <
(z(0)] = [a} 3b) Dn = e Da = Bos Da = Bos...
M, = Dy Dy <
where
000 - 0 —B Du @ Dy — DuMy Dn 4Dy~ DuM, Dy.
100 - 0 — B My = Dy Dy <
Bl=1010 - 0 —B, D @ D — DuMsy Dy @ Dw — DuM; Dy
. . . . . M= DqD, <
0 0 0 . I —Bg Dn A D- - DuM. .D-
The dimensions of the matrix [B], the block elements B,, and
state vector [z] are (nm) X (nm), m X m, and (nm) X 1, re- Dus
spectively. Equation (3) ean be transformed into the block '
Schwarz form by using the following linear transformation: My = DapaDys <
2} = [Killy} (4a) Des
where
and
[9 = [KiYBIKilly] = [Ally} (4b)
where
rl Dot sDacsn™ + Dy 43Dpoyit 0 Dps.4Dys11 0 7]
0 DyDy1 0 DyDy1 0 DyDy?
0 0 DyuDy 0 DguDy™? 0
0 o 1 0 DaDy1 0 DuDyt
i = | e (4¢)
(1] 0 0 H 1 0 DnDu—l 0
0 0 0 oo 1T 0 DaDur
0 0 0 o ! 0 T T o
0 0 0 C o0 o T
- -
and
o -4, 0 -0 o D(,j. = Disgn— DiguMis j=1,2,..., i=34, ...
I —4 - 0 0 Mi = Diny Dy £=1,2,...,n
0 1 0 .0 det (D4, 0
(4] = . ° (4d) Disaa} (8e)
The construction of the matrix Routh array in equation (5b) is
0 0 o . —Ant as follows. Arrange the matrix coefficients of the given matrix
0 0 0 - 1 -4, polynomial in equation (2a) in the first two rows of the array

The dimension of each block element in [A] and [K Jism X m,
The block elements D, ;, having dimension m X m, in equation
(4¢) can be obtained from the following nlternate matrix Routh
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shown in equation (3b). A new matrix M, is obtained by the
matrix multiplication Dy~1Dyy where Dy and Dy are the block
elements in the first column of the array. The block elements in
the third row are generated from the M, and the block elements
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in the first two rows as follows: First, each block element in the
second row is postmultiplied by M|, then, subtract each resulting
matrix from each block element in the first row, Enally, shift
each block element s0 obtained one column left and drop the
zero-first block element to form the third row. The second and
the obtained third row are then used as starting rows to generate
the new matrix Ms and the vlock elements in the fourth row. Re-
peating the processes to the n + 1 row yields the complete matrix
touth array. When any )., matrices other than Dy or D14
in equation (5¢) are singular, another set of D,y can be chosen
from the new matrix polynomial that i= the product of the
original matrix polynomial and an asymptotically stable matrix
polynomial. Thus a new matrix Houth array can be obtained
and the stability of the original matrix polynomial is preserved
because the stability of the original matrix polynomial is in-
variant under this transformation. Shieh and Sacheti [6] have
shown that if H; = C;Cipalfori = 1,2, ..., nin equation
(1) are positive definite, then the system in equation (2) is stable.
Here, we show similar results when replacing H; by M,. Note
that a positive definite matrix means a matrix is real, symmetric
and positive definite,

Theorem1, If {M.] i = 1,2, ..., nin equation (5) are posi-
tive definite, then the system in equation (2) is stable.

Proof. Performing the following new transformation
(W] = (Kallz] (6)
on equation (4) yields
[2] = [K\J"YA)Ksllz)

where
M. 0 (L]
0 M., 0 0
P=1]. . P (8b)
0 0 M, 0
0 o0 0 M,

and 7' in equation (8a) designates transpose.
Since { M.} are positive definite which implies that P is posi-
tive definite, V is positive definite. The derivative of V is

V = {]"[PF + FTPj7]

= — [2I7IQllz] = — [2]T[RRT}[2) (9a)
where
00 00 0
00 - 00 0
=1L m=]. (99)
00 - 00 0
00 0 27 Vv2I

rank {Q] = rank [R] = m. From equations (8) and (9) we can
see that V is a Liapunov function. Hence, we conclude that the
system in equation (2) is stable.

From the result obtained in Theorem 1, we establish another
sufficient condition for the stability of the system in equation
(2) by using the block elements D, ; in the matrix Routh array
in equation (5) instead of the M; in equation (5).

Theorem2. If {D:,} i = 2,4,6, ..., are positive definite, the

= [Fll2] (7a) eigenvalues of {D;:} © = 1, 3, 5, ..., are positive and real, and
where {DiaDisaa) 1= 1,8,5, ..., {DinaDia} i = 2,4, 6, ..., are
Hermitian, the system [equation (2)] is stable,
Du:i O 0 0 In order to prove Theorem 2, we need the following lemma
0 Dyss - 0 0 which is due to KyFan (9] [p. 137).
[Kal = | - . e (7b) temmal. Let K, be positive definite and K, such that KK,
0 0 . Dn © is Hermitian. Then KK} is positive definite if and only if the
0 0 . 0 Dn eigenvalues of K, are positive and real. In the following lemma,
we switch the conditions on K, and K, yielding the same resuit.
and
- -
0 -MJ 0 0 0 0
Mu, 0 ~Ma 1 0 0 0 0
0 Myt 0 0 0
=10 0 0 L0 —MA 0 0 (7c)
0 0 0 Mt L 0 —Mt 0
0 0 0 Do Mot 0 —Myt
Lo o 0 L0l 0 Mt oMe

It in noticed that, if each block element in the matri: [F] in
erquation (7c) were a scalar, then the matrix [F] would be a
matrix of the Schwarz form (8], Since the elements are blocks,
the matrix {F] in equation (7r) is a block Schwarz form matrix.

The linear transformation matrix {K) between z coordinates
and z coordinates is

[z] = [K(z] = (K:\l[Ky)e) (7d)
Now, consider the following quadratic equation:
V = (s]7[P)[2] (8a)
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Lemma 2. Let K; be positive definite and K, such that KK,
is Hermitian. The K,K) is positive definite if and only if the
eigenvalues of K, are positive and real.

Preef. Since K, is positive definite which implies K,T is posi-
tive definite, where 7" designates transpose, it is seen from lemma
1 that K:TK,T is positive definite if and only if the eigenvalues
of KT are positive and real. But K,TK\T = (K\Ky)T; i.e.,
KK, is positive definite if and only if the eigenvalues of K; are
positive and real.
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temma3. If K, is positive definite and KK, is symmetric,
then K, 71K is symmetric.

Proof. Since (KWR3)T = K.TK\" = K,K\T = KiK: which
implies K\7 = Ky KK Hence (KoIK)T = KT(KHT
= KK, WKWKy = KWKy e, Ky1K, is symmetric,

Proof of Theorem 2. By lemma 3, we know that Dina™tDis
is symmetric for i = 1,2, .... By lemma 2 or 3, we know that
M: = Dina"1D;, is positive definite. Hence, the system in
equation (2) is stable following the results of Theorem 1.

In order to show an application of Theorem 1 and Theorem 2,
let us consider the following matrix characteristic equation:

A+ Bs+C =0 (10a)

1

: |
= [l 0]. B = [; 1] and C = 3
01 1 3 0 2

1f we arrange the matrices A, B, and € in equation (10a) by
following the matrix Routh algorithm of equation (1), we obtain

where

10
Cy=A= Cpe=C =
11 -0 l_ 12
1 3 -1,
Hi= — <
) 3_|
CnmB=|>
_ 1 3]
m-t ol <
: 22§
3

b

1

1 -

Cn-C- 3
0 2

In this case, no conclusion can be drawn from the sufficient con-

dition established by Shieh and Sacheti (6. However, if we ar-
ranged the matrices A, B, and C according to equation (5), we
have

1

D"=B=[3 1
1 3

10
D“=A=[0 ] Dy =C= 1

511-53 <

1
Dn-C- 1§

0 2

From Theorem 1, we see that the system is stable.
) This example shows the application of Theorern 2. Iet us con-
sider the following matrix characteristic equation:

A+ Bis+ Ci =0 (11a)

where

1 .
Dn =4, = [ 0], Dy = By = [25.77 13.7]
01 137 7.3
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In Bellman (9], [p. 67, p. 101} it is shown that, if 4,, By, and C,
are positive definite, then the roots of det (482 + Bis + G} = 0
have negative real parts. But in this example, no conclusion ean
be made from Bellman’s results. However, we know that

25.77 13.7]

13.7 7.3

-1 2.1
Du“C|=Dn-[ ]

Du'Dn-—-Ax'Bl=[

and

3 1.63
Dy Dy=0C - B = ] (11b)
1.63 0.9

which are symmetric, B, is positive definite, and the eigenvalues
of A; and (') are positive and real. Therefore, from Theorem 2
we conclude that the system in equation (11a) is stable. Although
only second order matrix polynomials with 2 X 2 matrix coef-
ficients are illustrated in the examples, the theory is valid for
high order matrix polynomials.

1 L

3

0 2
(100)

!

3

0 2
(10¢)

il Necessary Conditions

Tn this section we establish some necessary conditions for the
stability of multivariable systems. The failure to satisfy the
necessary conditions for stability is equivalent 1o the sufficient
conditions for the instability of the same systems; i.e.,
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Theorem3. If (M.} i=1,2, ...,
there exists one { M.} ¢ = 1,2, ..
negative semi-definite, or indefinite, then the system in equation
{2) is unstable.

n are symmetric such that,
., n which is negative definite,

Proef. Suppose the system is asymptotically stable and one
of { M.} is negative definite, negative semi-definite, or indefinite.
Since the stability is invariant under the linear transformation
and the matrix F in equation (7) is a stable matrix. Let us con-
sider the following equation:

XF + FTX = - Q (12)

where Q is a matrix defined in equation (9b). By Thoerem 4 in
Bellman (9] {p. 239] and the theorems in Anderson {10} and
Barnett {11] [p. 86], we know that equation (12) has a unique
solution. Since @ is positive semi-definite and rank (Q] = rank
[R] = m, we conclude that the solution X of equation (12) is
also positive semidefinite. Furthermore, X is positive definite
if the pair [F, RT] is observable. It is easy to verify that the
matrix P which was defined in equation (8b) satisfies equation
(12). Therefore X' = P is positive semidefinite or positive def-
inite. This implies that at least one of the { M.} is positive semi-
definite and others positive definite or all positive definite. This
contradicts our assumption that one of the {M.} is negative
definite, negative semidefinite, or indefinite. Hence the system
in equation (2) is uastable if one of the {M.~} is negative definite,
negative semidefinite, or indefinite.

To show an application of Theorem 3, consider the example
{5):

dy

d
A;d7+B;a—iL+Cxu=0 (13a)
where

5 1 49 0 -5 -1
A] = y 01 = ]
1 10 0o 4] -1 -10

Applying equation (5) yields the matrix Routh array and M;

1[5 1
M= <
! 49[1 10]
| 0 49
-10 1
1 -5
-5 —1]
[ -1 -10

M, is symmetric and indefinite. According to Theorem 3, the
system is unstable.

The following theorem is another criteria for an unstable sys-
tem,

Dy=4A =

Dy= B = 49 o]

Dy = Cy =

Theorem4. If Dy = B,, = I and the trace of Dy (= B,)is
negative, then the system in equation (2) is unstable, where Dy,
and D, are defined in equation (5a).

Proof. The matrix characteristic equation of the system in
equation (2) is

(D(s)] = Dys® + Dys*™! + Dysv2 4 ... + D;
= Bays® + Bu*t 4 Bous 2 4+ ... +B, (14)
where 7 = lif nisevenandi = 2if n is odd.

Since the sum of the eigenvalues of the system in equation (2) is
equal to the negative value of the trace of Dy, this implies that
there exista some eigenvalues of det [D(s)] which are positive.
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Hence, the system is unstable.

The next criteria is another necessary condition which we
state as follows.

Theorem$. If det Dy, > Oand det D;, < 0, ordet Dy < O
and det D; . > 0, and Dy, D, , are defined in equation (14), then
the system in equation (2) is unstable.

Proof. Since the system in equation (2) has the matrix char-
acteristic equation [D(s)] in equation (14), then we expand the
det [D(s)). We find the constant term is equal to det B, = det
Di.n. 1f det D > 0 and det D;, < 0, this implies that the coef-
ficient of the polynomial det {D(s)] has a negative sign. We can
then conclude that the det [D(s)] = 0 has a solution with a
positive real part. Hence the system is unstable.

iV Conclusion

Some necessary and some sufficient conditions have been de-
veloped for the stability of a class of multivariable systems. A
linear block transformation has been derived for transforming
the coordinates of an observable block companion form to the
coordinates of a block Schwarz form. The new method has
partially extended the scalar Routh criterion to the matrix Routh
criterion to a class of multivariable systems.
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